
32 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 56, NO. 1, FEBRUARY 2007

Internet-Based Distributed Data Acquisition System
for Fiber-Optic Sensors

Przemek J. Bock, Shikharesh Majumdar, Member, IEEE, and Wojtek J. Bock, Fellow, IEEE

Abstract—This paper describes an internet-based distributed
data-acquisition system for fiber-optic pressure sensors. There is a
great need in industry to coordinate remote resources to perform
a common task. The architecture described is based on remote
access, via the internet, to a large number of fiber-optic pressure
sensors located in different geographical areas. Distribution is
done with server applications, which schedule requests for service
and control the actual sensor device. Servers also detect conflicts
between new requests and their current schedules. Client applica-
tions act as virtual instrument panels that dispatch measurement
tasks for servers. The architecture supports multiple sensors,
which can be added/removed from the system dynamically. As
well, there can be multiple clients attempting to access servers
simultaneously. Thus, the sensors in question are publicly shared
among the various active client applications.

Index Terms—Fiber-optic sensors, internet resource sharing, re-
source distribution, sensor grids, senor monitoring.

I. INTRODUCTION

HYDROSTATIC, quasi-static, or dynamic pressure is one of
the most important measurands in engineering mechanics.

Nonelectrical, electrical, or hydraulic pressure transducers em-
bedded in concrete, earth, or rock materials can conveniently be
configured to sense a variety of structural loads and responses
in such large structures as highway and railway bridges, hydro
dams, underground mines, and large buildings. However, none
are well suited to more demanding civil engineering environ-
ments. Nonelectrical hydraulic devices are costly in terms of
labor-intensive inspection, maintenance, and repairs; they are
also difficult to multiplex. Electrical measuring devices are out
of the question in open-air structures (risk of lightning), and in
mining environments (risk of explosion). For these applications
fiber-optic sensors (FOS) may offer significant metrological
improvements: electrical passivity, high bandwidth, safety in
corrosive or explosive environments, immunity to EMI, high sen-
sitivity, miniature dimensions, possibility of remote operation,
and direct compatibility with fiber-optic and wireless networks.

In this paper, we discuss an internet-based data acquisition
system proposed specifically for FOS developed at the Pho-
tonics Research Center at the Universite du Quebec en Outauais

Manuscript received March 27, 2006; revised October 26, 2006. This work
was supported in part by the National Science and Engineering Research
Council of Canada.

P. J. Bock is with the Centre for Research in Photonics, University of Ottawa,
Ottawa, ON K1N 6N5, Canada (e-mail: przemek.bock@site.uottawa.ca).

S. Majumdar is with the Department of Systems and Computer Engineering,
Carleton University, Ottawa, ON KIS 5B6, Canada.

W. J. Bock is with the Centre de Recherche en Photonique, Universite du
Quebec en Outauais, Hull, QC J8X 3X7, Canada.

Color versions of one or more figures are available online at http://ieeexplore.
ieee.org.

Digital Object Identifier 10.1109/TIM.2006.887778

(UQO), which is particularly promising for integration into the
civil engineering structures. The basic system involves a polari-
metric pressure sensor based on pressure-induced birefringence
effects occurring in highly birefringent (HB) fibers, and devel-
oped in a temperature-compensating configuration. The perfor-
mance of these systems has been analyzed in previous publica-
tions [1], [2].

The usual technique of stress and load analysis in civil engi-
neering involves various configurations of hydraulic systems,
in which stress in the concrete or rock material surrounding
the pressure cell is compensated and measured by externally
adjusted hydraulic pressure within the device. Although very
reliable and enjoying the confidence of industry, this method
is costly in maintenance, difficult to apply remotely, and to
multiplex. Its use is only for static loads. Our idea is simple and
has high potential for successful implementation: due to its small
dimensions, the polarimetric FOS is placed inside a standard,
application-specific hydraulic pressure cell filled with a hydro-
static medium. The cell construction is appropriately modified
to accommodate the sensor and to allow implementation of our
concept for self-compensation of temperature induced fiber bire-
fringence. Such implementation requires the sensing HB fiber of
the device to be spliced to an equal length of the compensating
HB fiber, with their corresponding birefringence axes rotated at
45 . Consequently, the cell is designed in a way assuring that
only the sensing fiber undergoes pressure changes, while the
compensating one is completely isolated from such changes. At
the same time, both parts of the sensor are placed very close to
each other to avoid any temperature gradients that might eventu-
ally compromise the quality of temperature compensation. The
assembly of the fiber-optic pressure cell (compensated by proper
design and proper choice of compatible materials for temper-
ature-induced pressure changes inside it) is composed of two
metal plates, which are joined together using a welded sealing
to form a pressure pad. After calibration against a pressure
standard, the assembly can be safely embedded in concrete using
standard procedures, and pressure can now be remotely read
via optical fibers and sent via internet to the monitoring station.
For a single sensor we have achieved a very high accuracy of
pressure measurement up to about 40 MPa at the level of 1% of
full scale within a temperature range from 0 C to 45 C. One of
the most important requirements for the data acquisition system
described in this paper was not to deteriorate this accuracy
while operating remotely via the internet.

II. DISTRIBUTED SYSTEMS

There is an ever-increasing demand in sharing distributed
resources among multiple users. Depending on the application

0018-9456/$25.00 © 2007 IEEE

Authorized licensed use limited to: Universite du Quebec en Outaouais. Downloaded on July 22, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

BOCK et al.: INTERNET-BASED DISTRIBUTED DATA ACQUISITION SYSTEM 33

such a resource may be a set of computing devices, a collection
of data and storage devices, or—in our case—an array of
sensors deployed at various locations. Although the nature of
the resources is very different, similar techniques can often
be deployed for the effective management of a given resource
collection. A common resource management infrastructure,
called the grid, is emerging for the coordination and manage-
ment of various geographically dispersed resources [3]. Tools
such as Globus [4] are being developed for providing various
types of core services to grid applications. Grids for controlling
computing and storage devices are referred to as computing
grids, for controlling large distributed datasets are termed data
grids, whereas grids controlling arrays of sensors are called
sensor grids. A grid managing an ensemble of computers, data
resources and sensors is often referred to as an information grid.

This paper shares the concerns of sensor grids and focuses
on the effective management of an array of fiber-optic pressure
sensors shared by multiple users. The notion of a network of sen-
sors is becoming a popular area of research. A survey of wire-
less sensor networks for performing collaborative applications
for example is presented in [5]. The system described in this
paper is built using an internet-based client server paradigm. A
client that wants to use a specific set of sensors generates a re-
quest that is sent via the internet to a server that manages the
requested sensor set. The sensors are used by the client for a
predetermined interval of time during which measurement data
is collected and sent back to the client. The client requests are
submitted through a graphical user interface (GUl), whereas the
servers perform lower level services such as conflict resolution
and scheduling as well as the driving of the sensor hardware.

Fundamentally, coordinating multiple devices to do a partic-
ular task simply gives the data collected more cohesion and
credibility in terms of scope and the overall picture. Software
systems for distribution of sensors are still in their infancy. Ex-
isting work includes the usage of control software for acquisi-
tion of data for water quality [6]. As well, there has been work
done in creating generic architectures for distribution [7]. How-
ever, there is a fundamental gap between pseudo data-on-de-
mand, and the limitations of IP. The novelty of our project is the
service-oriented design of the system and the merger of novel
photonics in a distributed grid environment.

This paper describes an internet-based distributed data-acqui-
sition system, designed to control several application-specific
measurement installations in remote locations by several autho-
rized clients. The emphasis is on a publicly accessible sensor
grid with an easy to use interface over a wide area network. The
interface in particular was designed to be a convenient “virtual
instrument panel” for fiber-optical-sensors. We used sensors de-
signed to measure stress and load in civil engineering structures
such as bridges, tunnels, or buildings. The tests were done using
a specific type of photonic sensors based on HB fibers, and on
polarimetric decoding system mentioned above. Distribution
is done with server applications, which schedule requests for
service and control the actual sensor devices. Servers also detect
conflicts between new requests and their current schedules.
Client applications act as virtual instrument panels that dis-
patch measurement tasks for servers. The architecture supports
multiple servers, which can be added/removed from the system

dynamically. As well, there can be multiple clients attempting
to access servers simultaneously. Thus, the sensors in question
are shared among the various client applications, with no loss
of accuracy associated with internet access to the measurement
data. Although this research focuses on controlling a set of
pressure sensors, the higher level services provided and the
techniques developed are relevant in the context of other types
of Sensor Grids as well.

III. TECHNICAL OVERVIEW

The design of the distribution architecture is partitioned into
three applications: repository, client and server. Below is a tech-
nical description of the achieved solution. The design rational
is discussed for each component of the system as well as al-
ternative approaches. Implementation details are related to the
individual components. This system has at minimum three ap-
plications, all running on different hardware nodes.

A. Communication Development

The system needs communication between hardware nodes
via the internet. There are four approaches to facilitate this
transfer of information.

1) UDP is the simplest form of transport over IP. It is a bare
datagram with no sense of connection, flow control, or
error recovery.

2) TCP sockets are a connection-oriented protocol. Sockets
are an easy-to-use transfer mechanism, providing flow con-
trol and recovery.

3) Universal resource locator (URL) approach. URL could be
used with CGI scripts to facilitate communication.

4) Remote method invocation (RMI) is the preferred way [8]
for distributed application to communicate with each other.

RMI is based on sockets and the serialization of objects. The
method of choice for this project is sockets. UDP is too limiting
and unreliable for this application, while URL is an unneeded
abstraction. As well, Java RMI is complex, time-consuming,
and suffers from poor performance [9]. Thus, due to perfor-
mance and time constraints, the socket approach was preferred.
The transfer of information through these sockets was based
on Java’s serialization technology. Serialization is streaming
objects—their member variables—in order to recover them
after transfer. This means that data transfer at the development
level will always be in the form of an object and not primitive
types. Abstraction of the transfer technology is then achieved,
resulting in reduced coupling. Since RMI is based on sockets
and serialization, an RMI extension would be much easier to
implement using this approach.

B. Repository Application

This is the starting point for all distribution for this grid.
The repository contains a list of server identities (server name,
number of sensors attached to the server, sensor description, IP
address, listening port number). Servers register with the repos-
itory, which makes them visible to the whole system. Clients
can contact the repository to request the address space. The
repository has no knowledge of any clients. It implements the
“client/server” [10] design pattern, thus making it the simplest

Authorized licensed use limited to: Universite du Quebec en Outaouais. Downloaded on July 22, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

34 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 56, NO. 1, FEBRUARY 2007

subsystem (it only does request handling). A major design de-
cision was that this centralized application would not have any
influence on scheduling. The repository will not act as an inter-
mediate between the client and all the servers the client wishes
to contact. This is significant as scheduling decisions are pushed
up to the client. Reasoning behind this is twofold.

1) The more complex the central authority, the less distributed
the system becomes. Creating a repository with scheduling
“smarts” would cause excessive coupling.

2) As a result of added client functionality, we have a more
cohesive client application.

If the repository did have scheduling intelligence (all sched-
uling requests would go through it) a performance bottleneck
would result. Ideally, a distributed system like this would only
have clients and servers, with no single point of failure. How-
ever, there must be a starting point to “get-at” all of the server
locations. Naturally, knowledge of the repository address needs
to be known beforehand, for clients to function. There are disad-
vantages to this type of organization. Primarily, the client has to
have a scheduling component. This can either be interpreted as
positive (increasing cohesion) or negative (increasing coupling)
[10]. The other disadvantage is that there are clear benefits with
a centralized scheduler. Monitoring, flow control, and error re-
covery are much simpler if a central application handles them.
However, due to the bottleneck issue and decreased distribution,
the scheduling is not part of the repository. One of the main re-
quirements of distribution is to handle multiple requests simul-
taneously without compromising the ability to listen to new re-
quests. There are two possible solutions for this requirement.

1) We have a buffer active object, which listens for requests
and queues them up for execution in a first-in first-out
(FIFO) order. The buffer is read by a handler thread, which
would be responsible for the managing of the request.

2) One listener thread, which would dispatch a new worker
thread upon receiving a request. This worker thread would
be responsible for the servicing of the request.

The latter alternative is preferred due to three factors. 1) Par-
allel processing can occur while waiting for I/O access resulting
in increased efficiency. 2) With a dedicated listener/worker re-
lationship we nev. er need to worry about buffer maintenance.
3) The design is also much simpler and cleaner to implement
(the cost of multiple threads is insignificant in Java applications)
[11]. This paradigm is used throughout our system. The worker
thread, in this case, has access to the address space of the repos-
itory and ensures mutual exclusion for modifying its data [12].

C. Server Application

The schedule subsystem encapsulates experiment execution
and arrangement. When an experiment is accepted, we wrap it
as a passive object. This task will then be executed by a timer
active-object. From the time-execution perspective, there exists
a timer with a list of tasks to do. Each task is a template for
running an experiment. The details of what to do during a task
are found in the experiment object. When it is time to execute
a particular task, the timer invokes the main “run” method of
that task. Control is transferred via a high-priority thread. If the
task takes a long time to complete, other scheduled tasks may

be delayed. We place the transmission of results on a separate
low-priority thread.

The Java based timer does not make any real-time guar-
antees. It requests CPU control, but whether that demand
is acknowledged is uncertain. In practice, only the garbage
collection thread can really affect the performance of the
Java timer; therefore, is prudent to avoid object termination
(especially windows resources) during time sensitive tasks.
This is not a problem as the server has no dynamic GUI or
heavy data manipulation needs. Socket cleanup is the only
other reallocation problem; however, it is done on a low priority
thread, which means garbage collection is unlikely to occur on
task execution. The choice to utilize the Java timer facility is
based on a number of reasons. Besides the swing-timer (used
for refreshing GUls), the Java util. timer is the main API for
periodic execution. Secondly, since there can be only one task
executing at any given time, there is no need for parallelism
with custom threading. Thirdly, there would be no performance
improvement if timing were done through the use of individual
threads. The demand for CPU, which is made by the timer
object, is exactly the same as a thread. Java’s thread scheduler
can do no better [11].

D. Client Application

Separation of distributed communication transfer was essen-
tial. High priority threading was only used to listen for results.
Normal priority threading was used to service the reception of
results while low priority threading was left for updating the ac-
tive server list. The data transfer system is designed as a collec-
tion of tools. When communication needs to take place, the ap-
propriate tool is invoked to handle the request. Therefore, com-
munication is completely separated from entity and interface
classes. This results in increased system robustness due to re-
duced coupling of software components.

The results-marshaling was designed to manage data from
multiple simultaneous experiments. Upon reception of a mea-
surement result, the manager will append data to its result sink.
If the result is the first one in a given experiment, the system will
create a new sink and place the arrived data there. Each data sink
has a window associated with it for display purposes.

E. System

Fig. 1 shows a flow-graph of the functioning distributed mea-
surement system for the view. All messages are asynchronous,
which is indicated by the half arrow [13]. On startup of the
system, the repository needs to be created. Following this,
servers begin to register themselves by sending their locations
to this central repository. Once servers have been registered,
client applications can start utilizing them. A client would first
request the current list of servers by sending a message to the
repository as shown in Fig. 1. The repository would then reply
by transmitting the list of server locations. Now the client can
query any number of servers to perform experiments. The client
sets up the parameters specifying which experiments are to be
sent to which server. It then dispatches the list of experiments
to their target locations. Upon reception of a request for ex-
periment execution, a server returns an acknowledgment to the
source client. This acknowledgment would indicate whether or

Authorized licensed use limited to: Universite du Quebec en Outaouais. Downloaded on July 22, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

BOCK et al.: INTERNET-BASED DISTRIBUTED DATA ACQUISITION SYSTEM 35

Fig. 1. System flowgraph for the repository, client, and server.

Fig. 2. Client GUI.

not the server accepted the experiment. If there was a conflict
in scheduling an experiment, the server will reject it and advise
the client of the failure. This is shown by the decision diamond
in Fig. 1.

Accepted experiments run on the target server for their du-
ration, or until cancelled. When an experiment is executed, the
server sends the results back to the source client. Most experi-
ments are periodic in nature, which means that results would be
sent periodically whenever readings are taken. Multiple servers
make up the system of shared resources. Multiple clients can ac-
cess these servers. Fig. 1 only shows one instance of the client
and server as an example.

IV. RESULTS

Accomplishments of this research are the creation of a novel
internet-based distributed data acquisition system that is pub-
licly accessible. The system supports multiple client access
to servers which act as virtual instrument panels for FOS. It
contains GUI for specifying experiment properties, and func-
tionality for dispatching experiments to their target servers as
shown in Fig. 2. Each server can handle multiple simulta-
neous requests and has a conflict detection algorithm, which
ensures that requests do not overlap with the current schedule.
Servers have a hardware interface, which communicates with

Authorized licensed use limited to: Universite du Quebec en Outaouais. Downloaded on July 22, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

36 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 56, NO. 1, FEBRUARY 2007

Fig. 3. Maximum time disparity between the time stamp and the actual time of
execution of the task was less than 60 ms.

the Wavebook (a data acquisition card for PCs) to perform
measurements [14]. After measurement, the server transmits re-
sults to that experiment’s client source. Many experiments can
simultaneously return results to one client without the loss of
data as the system supports multithreaded independent connec-
tions. Therefore, we have a complete data acquisition system
supporting distribution of resources; control of the resources
(sensor hardware interfacing); multiple access handling; dy-
namic adding/removing of servers; and client dispatching and
results management.

A. System Testing

In distributed systems it is important to test the service re-
sponse during heavy loads. This can be difficult, as it requires
the automation of simultaneous service requests from different
sources. This type of synchronization for testing is best done
through software triggering; rather then multiple testers using
the application. Thus, a test application or class was used to im-
plement multiple client/server requests. This class first initiates
the repository. It then instantiates 1000 server applications, all
of which attempt to simultaneously register themselves to the
repository. Note that this is not entirely “simultaneous” as the
thread for each server application is created serially. Statistics
for the average service time for each server and dropping prob-
ability were measured.

We note that, based on priority threading and the resource
light Java thread, requests are very rarely dropped. Service time
largely depends on the number of instantaneous requests. The
more active worker threads instantiated, the slower the response
time. One problem with this approach is that the test class must
be on a high priority thread; if not, with each successive cre-
ation of a new server, the test class will have a smaller time
frame to produce a new server. This would delay server creation
and reduce the simulated “simultaneous” effect. On the other
hand, using low priority server threads may reduce throughput.
However, thread instantiation is quick with respect to doing I/O
through sockets; therefore, the test class thread priority should
not have a significant effect. The next load test is based on timing
response. We wish to determine how close the time-stamp (de-
sired experiment start time) is to the actual execution time of
an experiment task. For example, we want to run an experiment
at time , while it’s executed at time , where is the
time difference of the execution. An experiment was run with
100 periods on one server. The server outputted the difference
between the time of execution and the time the experiment was

scheduled for. Fig. 3 shows a histogram of the average value
of . It is important to note that this experiment was repli-
cated ten times, and the resulting data from all replications was
averaged. Note that is always positive, meaning that an ex-
periment would never execute ahead of schedule. From Fig. 3
we see that the greatest discrepancy of server timing is approxi-
mately 60 ms. This is within tolerance of the requirements. The
question becomes: does the distributed system adversely affect
the measurement data itself?

V. DATA INTEGRITY

There are several sources of data errors in this sensor grid,
which can be divided into two categories:

A. Server Related

As was mentioned before, data may be acquired late by up
to 60 ms on a given server node. Data may also contain er-
rors in the sampling of the measurand. This includes erroneous
data as well as possible artifacts in the sensor. Erroneous data
is relative to the resolution of the data acquisition device. In our
case, the Wavebook’s resolution was approximately 0.3 mV,
which was more then the accuracy of the sensor used. Thus,
errors related to the Wavebook’s resolution were ignored. Arti-
facts in the data were eliminated by being sampled at 500 Hz
(with anti-aliasing); the extremes were discarded and the re-
sulting data was averaged. Also of note, we measured hydro-
static pressure, which is inherently less prone to errors as op-
posed to if we were sampling a dynamic pressure system.

B. Transmission Related

Once the server acquired the data, it was transmitted to the
client destination. The transmission protocol used was TCP/IP.
Calculating the error introduced to sensor measurements is as
follows: firstly, TCP/IP is a connection-based protocol, which
contains a 16-bit checksum with a resend on error (triple-ack
or timeout). Therefore, the measurement data must contain an
error that still passes the checksum; however, this is also com-
plemented with layer 2 from OSI (Open Systems Intercon-
nection model) CRC checks. Secondly, the quantity of errors
introduced into the transmitted measurement depends on the
path of transmission. Different networks, nodes, and transmis-
sion media have different bit error rates. For our testing, we
used a local metro-sized network. Another important issue in
discussing measurement transmission error is the significance
of that error. Measurements in our sensor grid were trans-
mitted as doubles. A double data type consists of: 1 bit for
the sign, 52 bits for mantissa, and 11 bits for exponent. There-
fore, bit errors to different parts of the double have different
effects. Depending on the measurement range, exponent er-
rors can be neglected as well as sign errors; however, errors
to the mantissa—especially in the order of significance the user
wishes to study—can be problematic. Thus, to calculate the
source-to-destination error rate, we must know the bit-error rate
(BER) of each link, the transfer point error, and the probability
that this will result in a correct checksum with corrupted data
on the TCP side. This can be estimated as follows: first, as-
suming a transmission rate of 1000 packets/second on a very
error prone link with a probability of of not detecting an

Authorized licensed use limited to: Universite du Quebec en Outaouais. Downloaded on July 22, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

BOCK et al.: INTERNET-BASED DISTRIBUTED DATA ACQUISITION SYSTEM 37

Fig. 4. Pressure measurement over a metro network at temperatures of
(a) 14 C, (b) 24 C, and (c) 34 C.

error by a lower level protocol (typical BER values are
with a 16-bit layer 2 CRC having a probability of
detecting that error). We assume 100 of these links need to be
traveled to reach the destination. Second, in a 16-bit checksum,
the probability of packet corruption with a resulting identical
checksum is 1:65536 (assuming randomly distributed check-
sums). Using these estimates, we can expect about one corrupt
measurement packet (correct checksum but faulty data) over
2 years. Of course, this is a very simplistic estimate, but it
illustrates that in our sensor grid transmission errors are in-
significant—especially since we are not transmitting packets
near 1000 per second or the fact that the link error estimate
is grossly conservative. Using our local metro-network, we did
several remote measurements, which were stored on the local
server and compared to the measurements that were transmitted
to the client. We found no difference between the two measure-
ment sets of before and after transmission. This was an intuitive
result due to the above transmission error estimate.

Fig. 4 shows remote pressure measurements from 0 Bar to
240 Bar, and back to 0 Bar. Measurements were conducted at
three temperatures of 14 C, 24 C, and 34 C to show the
temperature insensitivity of the pressure sensor. The resulting
measurements were identical to the measurements stored on the
sensor’s server (i.e., before transmission).

VI. DISCUSSION

One hurdle for the current architecture is the firewall. Fire-
walls only allow communication through certain well-known
ports. Since communication is based on dynamic socket allo-
cation (different port numbers), socket traffic will be blocked.
There are three main solutions to this problem.

1) HTTP-tunneling: We encapsulate the socket connection
with an HTTP POST request. Another flavor of this is CGI-
tunneling. Often HTTP proxies fail nonpublic ports [11]. In
this case we use CGI-tunneling, which is based on a Java
CGI script that must be run on the server-side. This script
marshals the HTTP POST message to the proper target.

2) Socket Factories: A feature of Java RMI, which enables
clients and servers to create custom socket connections
over firewalls.

3) SOCKS: A protocol that proxies socket connections.
The first two solutions are designed for RMI. The third solution
is an emerging technology that is not widely used. The simplest
and least robust answer to the firewall problem is HTTP-tun-
neling. The problem with that is it often does not work, and Java
must settle for CGI-tunneling. This is a great security risk, re-
sulting in all ports “becoming” public [11]. Our solution is to
use an IP-over-IP wrapper, much like VPN encapsulate IP for
security reasons. This approach allows for tunneling within a
socket-based solution.

The other issue with internet-based distribution is that of
real-time requirements. With TCP/IP, one has no guarantees
about packet route, delay, or dropping. However, our experi-
ments show that this is not associated with any loss of accuracy
to the sensor system. As packet labeling technologies grow
in prominence, internet-based measurement grids will come
closer to data-on-demand systems.

REFERENCES

[1] W. J. Bock, M. R. H. Voet, M. Beaulieu, T. R. Wolinski, and J. Chen,
“Prototype fiber-optic pressure cell for stress monitoring,” IEEE Trans.
lnstrum. Meas., vol. 41, no. 6, pp. 1045–1049, Jun. 1992.

[2] W. J. Bock, “Fiber-optic sensors for applications in engineering me-
chanics,” Proc. SPIE, vol. 3189, pp. 68–73, 1997.

[3] I. Foster and C. Kesselman, Eds., The Grid. San Francisco, CA:
Morgan Kaufmann, 1998.

[4] The Globus Alliance, Globus Toolkit [Online]. Available: http://www.
unix.globus.org/toolkit

[5] I. Akyldiz, W. Su, and Y. Sankarasubramanaim, “Wireless sensor net-
works: A survey,” Comput. Netw., vol. 38, no. 4, pp. 393–422, Mar.
2002.

[6] F. Toran, D. Ramirez, S. Casans, A. E. Navarro, and J. Pelegri, “Dis-
tributed virtual instrument for water quality monitoring across the in-
ternet,” in Proc. IEEE Instrum. Meas. Technol. Conf., Baltimore, MD,
May 2000, pp. 652–656.

[7] M. Bertocco and M. Parvis, “Platform independent architecture for dis-
tributed measurement systems,” in Proc. IEEE Instrum. Meas. Technol.
Conf., Baltimore, MD, May 2000, pp. 648–651.

[8] E. R. Harold, Java Network Programming O’Reilly & Associates, 2000.
[9] B. Morgan, Distributed Object Alternatives Java World, 1997.

[10] B. Druegge and A. H. Dutoit, Object-Oriented Software Engineering:
Conquering Complex and Changing Systems. Englewood Cliffs, NJ:
Prentice Hall, 2000.

[11] “The Java Tutorial: A Practical Guide for Programmers” Sun Corp.,
2002 [Online]. Available: http://java.sun.com/docs/books/tutorial/

[12] R. Winder and G. Roberts, Developing Java Software. New York:
Wiley, 1998.

[13] B. Oestereich, Developing Software With UML Object-Oriented Anal-
ysis and Design in Practice. Norwell, MA: Addison Wesley, 1999.

[14] Omega Corp, User’s Guide: OMB-Wavebook-512 High-speed
Portable Digitizer Omega, 1996.

Authorized licensed use limited to: Universite du Quebec en Outaouais. Downloaded on July 22, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

38 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 56, NO. 1, FEBRUARY 2007

Przemek J. Bock received the M.Eng. degree in
biomedical engineering from McGill University,
Montreal, QC, Canada, in 2005. He is currently
pursuing the Ph.D. degree in electrical engineering
at the Centre for Research in Photonics, University
of Ottawa, Ottawa, ON, Canada.

He is currently with the National Research
Council of Canada, Institute of Microstructural
Sciences, Optoelectronic Devices Group, where he
is working on advanced spectroscopy techniques
for the silicon-on-isolator platform. His research

interests are integrated optics, silicon photonics, spectroscopy, and biomedical
applications of integrated optics.

Shikharesh Majumdar (M’89) received the B.S.de-
gree in electronics and telecom engineering and
a Diploma in computer science (hardware) from
Jadavpur University, Calcutta, India, and completed
the Corso Di Perfezionamento from the Politecnico
Di Torino, Torino, Italy. He received the M.Sc. and
Ph.D. degrees in computational science from the
University of Saskatchewan, Saskatoon, SK, Canada.

He is a Professor and the Director of the Real Time
and Distributed Systems Group, Department of Sys-
tems and Computer Engineering, Carleton Univer-

sity, Ottawa, ON, Canada. He worked at the R&D Wing of Indian Telephone In-
dustries (Bangalore) for six years. His research interests are in the areas of grid-
based systems, operating systems, middleware, and performance evaluation.

Dr. Majumdar has received two awards related to publications in his areas os
interest. He is a member of ACM and was a Distinguished Visitor for the IEEE
Computer Society from 1998 to 2001.

Wojtek J. Bock (M’85–SM’92–F’03) received the
M.Sc. degree in electrical engineering and the Ph.D.
degree in solid-state physics from the Warsaw Uni-
versity of Technology, Warsaw, Poland, in 1971 and
1980, respectively.

He is currently a Full Professor of electrical engi-
neering, the Canada Research Chair in Photonics, and
Director of the Photonics Research Center at the Uni-
versité du Québec en Outaouais, Hull, QC, Canada.
His research interests include fiber optic sensors and
devices, multisensor systems, and precise measure-

ment systems of nonelectric quantities. He has authored and co-authored more
than 230 scientific papers, patents, and conference papers in the fields of fiber
optics and metrology.

Dr. Bock was a member of the Administrative Committee of the IEEE Instru-
mentation and Measurement Society.

Authorized licensed use limited to: Universite du Quebec en Outaouais. Downloaded on July 22, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

