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IS THE HILHERT SPACE LANGUAGE TOO RICH?

ABSTRACT

In order to answer this question, we analyse different phenomena

occurring in general experimental set-ups arranged to analyse the properties of

some unknown beams of particles. We arrive at the conclusion that some-

times the Hirbert space language appears to "be too rich and also that

there are some phenomena where the notion of .transition probability dis-

appears and any attempt to introduce it leads to the possibility of infinitely-

many inequivalent descriptions. Our analysis encouraged us to ask the question

whether the Hilbert space language is not too rich in the more realistic

situations, for example to deal with high-energy elementary particle

scattering phenomena. A programme of investigations in that direction

is formulated.

In the polemic with axiomatic quantum mechanics it is shown that

the pure state concept can be formulated independently of the existence

of any maximal filter and that some claims,there can exist infinitely many

non-Hilbertian quantum worlds are unjustified.

I. INTRODUCTION

Axiomatic quantum mechanics aimed to prove the uniqueness of the quantum

mechanical Hilbert space description for all future phenomena. The efforts

were concentrated on a search for such a set of axioms, concerning the general

structure of the propositions which can be said about the physical systems,

which would imply the usual Hilbert space or algebraic representation.

1)
The investigations started by Birkhoff and von Ueumann , and continuedg y

in many other papers-, ' • ^ * 1 2 ' led to different axiomatization schemes

with the required properties. Though some of the accepted axioms did not seem

to be natural, the general belief is•-• that the problem is solved and that we

can freely use the usual Hilbert space language in future. One can claim that

it is not true,because we have to deal with the rigged Hilbert spaces and

because for the continuous spectrum the eigenvectors are only the distributions

acting on some nuclear space Y » but in all practical cases we can use wave

packets and regularized fields to obtain measurable results in the

framework of some Hilbert space.
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Axiomatic quantum mechanics was vigorously attacked by Mielnik ^

who claimed to prove that the Hilbert space description is only one degenerate

case of the infinitely many non-Hilbertian quantum worlds to be observed in the

future. In this paper we show that such conclusions are completely unjustified.

Mielnik's fault lies in the uncritical acceptance of the assumption that the

physical transition probabilities between some pure states are equal to the

static transmission probabilities between two maximal filters used for the

preparation of these states.

In our opinion, the approach of axiomatic quantum mechanics is too general

to give insight into some specific physical phenomena which can appear in

different experimental set-ups. For this reasori, we analyse the general

experimental set-up E which can be used to investigate the phenomena

characterizing the ensembles of particle-beams. We assume that our experimental

set-up E can consist of the following devices:

i) the sources S which produce beams B ;

ii) the filters F which allow the division of beams into sub-beams
having some common properties;

iii) the transmitters T which change a beam b into a beam b^ 5

iv) the detectors D which register the intensity of the beams having

a property p ;

v) the instruments I j A beam b enters into an instrument, the

instrument measures some property, and a beam b_ goes out.

However, two observers investigating the same beam,but equipped with a

different set of devices, can observe different phenomena and discover different

mathematical schemes to describe them. Keeping this possibility in mind, we

have been trying to analyse the different cases of the experimental set-up E ,

differing by the richness of the beams and the devices.

A careful analysis leads us to new definitions of filters, pure ensembles

and to the important conclusion that in any considered case the Hilbert space

description turns out to be possible. However, sometimes the data does not allow the

extraction of the transition probabilities in a unique way, so it is more

reasonable to abandon the Hilbert space description and to try to explain a

causal evolution of the whole ensembles. Another feature which appears in our

analysis is the fact that only some vectors and some scalar products in the

Hilbert space description of the phenomena have a physical meaning! so, in

some way, the Hilbert space language is too rich.
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The*too rich language makes possible.that using more or leas

phenomenological models.we can always tin no unique way) explain the data

without really broadening the understanding of them. The above-mentioned

successes in the explanation of the data deepen the belief in the basic and

unchangeable character of the language used and build a psychological barrier,

making the discovery of a new, more economic and less ambiguous}language much

more difficult.

All these considerations encouraged us to raise the important question

whether the Hilbert space language is not too rich to explain the observed

physical phenomena, for example in high-energy elementary-particle physics.

A natural question arises: how could we find out- whether this is the case?

Although it is evident now that we cannot assign to all vectors in the Hilbert

Fock space the physically realized states of the elementary particles system

and that not all scalar products can be practically measured, yet it does not

mean that the Hilbert space language Is too rich. Similarly, in classical

mechanics not every solution of an arbitrary Newton equation has a practical

meaning, and this does not mean that the language of classical physics is

inappropriate.

To show that the Hilbert space language is too rich to deal with the

scattering phenomena of elementary particles, we would have to show that, for

example, the assumption of the unitary S matrix (which Is derived using the

assumption that any vector in the Hilbert state can be taken as an initial

state) is violated. For example, we •would have to find two such initial

realizable states ( i,^ and | i2̂ >,which in our for&alism must be represented

by the orthogonal vectors, and show that the states jsi.yand |s±2^ cannot be

represented by the orthogonal vectors in the Hilbert space.

A careful analysis of these problems will be continued in the subsequent

paper.

II. GENERAL EXPERIMENTAL SET-UPS

At first we shall try to be as general as possible, so we shall consider

two sets of objects: a set of sources and a set of devices. The interactions

between beams, produced by the soureeB, and the devices give us the information

about them which can enable us to make physics. In general,the information

obtained is not unambiguous, so one has to accept some additional interpretational

assumptions.
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Usually one acts in a different way. Wanting to investigate beams, one

constructs some devices based on the knowledge of classical and quantum physics.

Such devices make possible the description of the unknown beams in terms of the

quantities known before (like mass, momentum, energy, charge, spin, etc.). Such

an approach is very reasonable, since it assumes the continuity of the science

which worked so well before. However, let us cite Bohr ': "The main point to

realize is that a knowledge presents itself within a conceptual framework

adapted to account for previous experience and that any such frame may prove

too narrow to comprehend new experiences • • < " and " • • • when speaking of a

conceptual framework we refer merely to the unambiguous logical representation

of relations between experiences ••• ".

Keeping this in mind, we now forget about our science and we assume that

we know nearly nothing about the sources and the devices. We want to

investigate the problem of how we should deal with that case and what kind

of language could be used to describe the observed phenomena. Let us start

with some statements:

Statement 1. The sources 8 and all the devices used in the experimental

set-up are given a priori. They should have the very important feature of

reconstructability, by which we understand that identical set-ups can be

constructed in any other laboratory at any time.

Statement 2. Among all the devices, we must have a counter g of quanta

which must be used to find the intensity of the beams. This counter is at

least one "classical" device which is necessary to make quantitative "quantum"

physics. The problem is to construct such a counter for unknown beams; but

let us assume that we have it. It need not be an absolute counter, like in

Ref. 16, but it should be the most sensitive one available.

Statement 3. Using the counter g , we can observe the changes of the beam

intensities after their interactions with the devices. Those interactions

give us the information about the beams and the devices we have. This

information allows us to classify the beams and to find among the devices

such objects as filters, transmitters, etc. Of course, the information about

the beams depends essentially on the devices used, and vice versa the information

about the devices depends essentially on the beams.which we have at our

disposal. So everything we know is to a large extent relative, and we can

never be sure that in the future we shall not discover other beams and devices

which will change the interpretation of some old phenomena or which will force

us to find a new theoretical language to describe the new ones* Similar views

are contained in Ref. lk. In many cases it seems to be improbable, but it

cannot be excluded.
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Stateaeat U. Having some knowledge of the 'beams and devices, we have to

choose some of them for further analysis. The chosen devices can he divided

into two groups:
,. 7 • • i • ' • , • • " • • • • •

a) preparatory ^id analysing devicesi
b) transmitters.' i'

Such a division corresponds to three stages of the experiment in which they

will be used:

i) preparation,

ii) transmission,

iii) detection.

Statement 5. In the preparation state we classify and prepare the teams. We

introduce the concept of pure and mixed beanus. Knowing the properties of the

pure beams» we can ascribe states to them. Thus the preparatory stage enables

us to find a set of initial states whose change in the transmission stage we

should try to explain.

Statement 6. In the transmission stage we let our beams go through some

chosen devices called transmitters. By transmitters we can understand also

the action of the external fields. If the beam was under the influence of

the external field for the time At before detection, we can say that it

went through the transmitter T(At). Thus we can have the approximately

instantaneous change of the beam or we can observe its more or less continuous

evolution.

Statement T. After the transmission stage we classify obtained beams and we

try to find some mathematical language and a model allowing the interpretation

of the observed regularities.

Row we have to find out the meaning of some terms which appeared in these

statements. It turns but that the definition of filters and pure states is not

obvious. We cannot see the details1 of the transmission process as it looks

inside a device. Therefore what we know is the change of intensity of the

incoming beam.

Before starting a more detailed discussion, we must add some

assumptions in the spirit of Statement 1. We have to work with an approximately

stable source, since in order to make predictions we have to know the intensities

of the beams relying on previous measurements. We must also assume that our

devices have no memory and aet in the "same" way on the "same" beams. So in

fact we are always dealing with ensembles b of the identically prepared

beams b . Performing many experiments we find the properties of the ensembles

b and often we can ascribe them to every beam of the ensembles b . If it is
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possible, we shall talk about the "beams and their properties instead of talking

about the ensembles. In our case we cannot always prepare arbitrary mixtures

of the produced beams. First we have to check whether the beams behave in

a "classical" or in a "quantum" way. We now make a short digression about such

behaviour, which will be a short repetition of well-known things.

If the beams and devices behave classically, then each quantum of the

beam can be characterized by some properties, possessed in an attributive way,

which can be found with the help of measurements. These measurements can by

no means change the properties of the quanta. A device d which is transparent

only to the quanta having a property "d" IB called a classical filter. Such a

device is of course idempotent, which means that.it is neutral to all quanta

to which it is transparent. If the quanta also have some other properties, ve

can construct, in principle, maximal filters - transparent only to the quanta

having all properties the same. Pure beams are those which go through the

maximal filters without change.

In quantum physics, a quantum can have a property with oertainty, but only

up to the moment of the measurement of another property which is incompatible

with the first one. To discover the quantum behaviour one must show the

incompatibility of some properties. For this purpose we must find at least

two idempotent and incompatible devices d and I to perform the following

experiment with a beam b . We transmit the beam b through the device d

and obtain a beam b, , for which a device d is transparent. Now we transmit

the beam b, through the device I and we obtain a beam h,« of smaller

intensity. Now the device A is transparent to the beam b.^ , Finally, we

transmit the beam b.. through the device d , obtaining a beam b... . If

the beam b,„, # b,n , then we can say that the beams and devices do notdxa cix
behave in a classical way.

If, on the other hand, b.^. = b ^ • b^. =* ̂ afal BXiA other devices

incompatible with d and A cannot be found in our experimental set-up, then

we can say that the beam b,^ 1B pure, the devices . A ,. d and A«d are

classical filters and the device A«d is a maximal filter in our set (for

simplicity we exclude the existence of other compatible more restrictive filters).

Each quantum of the beam bd- has two properties "d" and "A" - the filters

d and A are transparent to it. •

In the quantum case our classical picture of a filter has to be completely

changed. We cannot say, as in Ref. l6, "••• quantum mechanical filter selects

single particle properties". All the quanta of a beam b. have the same

property "d" (the device d is to them transparent), but after going through

the device A not all of them can still have a property d . So the id««pot«BEt
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device I does not select the quanta having a property "A" but it only

transforms with a probability p(d,Jt) some quanta having a property "d"

into a quanta having a property :"!" and absorbs ones which are not trans-

formed. n

We cannot explain this probabilistic approach assuming that the beam b.

is a mixture of the quanta labelled by hidden parameters 5 constant in

time and that the device t is a classical transmitter which can change the

property Md" and the parameters £ in a well-defined causal way depending

on their initial values. The non-existence of hidden parameters of this

kind was shown in a different formalized language by Jauch and Piron , So

we have to assume that the devices I and d act in an intrinsically

probabilistic way, but now we can ask whether it is possible to cheek that the

beam b, is a pure beam.

Let us, for example( assume that the beam b- of average intensity

I is a mixture of two beams of intensities 1^ and I- consisting of

quanta A and B , respectively. Let the device £ act in the following wayt

it transmits each quantum A with a probability a and changes it

into a quantum C i

It transmits each quantum B with a probability b and changes it

into a quantum D j

it transmits all the quanta D and C without change.

Let the device d act in a similar way:

it transmits each quantum C with a probability c and changes it

into a quantum A ;

it transmits each quantum D with a probability k and changes it

into a quantum B ;

it transmits without change all quanta A and B .

The transmission probabilities p(d,£) are strictly defined in the following

way

1) = 8 s(r) r(d,fc) dr , (l)

where S denotes a sum or an integral over all values of r(d,A) ; s(r) is

normalized to the unity probability distribution of the ratios r(d,A) ; the

ratios r(d,£) « I./Ij where I. and I. are the intensities of the beams
x. Q ^Cl x,

b, and b,« for all beams b € b . All other probabilities met later are
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defined in a similar way. The probabilities p(d,£) and pU,d) must be the

same for all pairs of d-A ana Jl-d , respectively, occurring in the chain

d-A-d-JL-d-Jt of the experiments with the ensemble 1J . It gives us the

constraints on the possible values of a, b, c,k . Other constraints are

obvious: 0 < I1§I2 < I , '1^ + Ig = I , 0 < a, b, c,k < 1 . If we analyse

these constraints we come to the following corollary:

Corollary. The probabilities a, b, c,k must satisfy the following condition

a-c = b« K= w ; then px(d,£) =» (a + b-A)/(l + X) and p^Ujd) » w/px(d,£)

where X * ^ \ * S o f o r every t w o experimental numbers p, (d,£) and p, (£,d

we can adjust one parameter w to make the above interpretation possible.

However, as we see p, (d»&) depends on the relative intensity X of the

two hypothetical subbeams; so ve can verify our hypothesis by trying to change

X in the beam b, , We do not have any other way than to cause the decrease

of the intensity of the beamB b. £ b, by different methods. If we do not

obtain different values for p, (d»Jt) and p, (A,d) , then we must reject our

hypothesis and state that it is not legitimate to assume that the beams b.

consist of subbeams, so they can be called pure. But by the expression

"a pure beam" we should not understand a beam consisting of Identical quanta,

since the term "identical" is classical and means "behaving in the same manner

in all situations". The devices £ and d do not treat all the quanta from

the beams b, and b in the same way. We cannot understand the mechanism

of this differentiation and also usually we do not observe separate stages of

the transition. We Just observe the behaviour of the beam b, as a whole and

find the statistical regularities. Therefore, in the theoretical analysis of

the process we should not represent the transmission of the beam b. by a set

of yes-no experiments with each quantum, but more properly we should talk about

the properties of the beams as a whole and about states of the beam instead of

talking about the states of the single quanta. In some situations it can happen

that only the states of ensembles b have a precise meaning. We shall discuss
•i

such situations later. This wholeness of the physical phenomenon in the
2)

microworld was wisely pointed out by Bohr many times.

We have spent so much time discussing the devices % and d because

they behave in a way analogous to the behaviour of the tourmaline plates

which are usually called filters. We wanted to show to what extent they are

not classical, if discussed in terms of corpuscular language. Their filtering

properties can be understood in the language associating a wave to each beam.

We also wanted to get an intuition enabling us to define filters and pure

beams in our poor information system.
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Definition 1» Filters are devices-which.:

1) are idempotent;

. ii)>- for all beams b t B entering an arbitrary chain consisting of the

filters f^, f ,••••»• the transmission probabilities for each pair

f^-f. are constant; Pvtf4.»f*) ~ const,(b) , p. (f. ,f.) « umstgtb) ;

ill) from all devices D satisfying the conditions i) and ii), for each

device d we can find a set 0. consisting of all devices -I, -which

have the same transmission probabilities to all other devices from D

as a device d has, namely

ij 6 D J

for all b « B and all d^ 4 t> | . ' "'

A filter is a miniaftlly transparent element In the set 0. . This means that
for all I. t 0^ and all b ft B , If the minimally trans-

parent element,in Q» cannot be found, then we call all the devices CL

relative filters and to further analysis of the beams ve choose one of them.

The long property iii) enables us to differentiate between classical

filters and some similar classical transmitters. Our definition of the filters

is different from that given, for example, in Ref. 15, and many relative

filters from Ref, 15 are treated like normal filters, as they should be.

Definition 2. Provisory maximal filters are the minimally transparent

elements in maximal sets of the compatible filters.

Definition 3. A provisory pure beam is one for which the provisory maximal

filter is transparent. We use the term "provisory" since we are not sure

whether the set of filters which we have in E is a maximal one. In the

transmission stage some provisory pure beams can behave in a way suggesting

that they consist of the two sub-beams not separated in the preparation stage.

Usually it is assumed that two filters d and I are characterized by

the transmission probability independent on b . In this paper we assume that

the beams can be characterized by many properties and the same filters can

be sensitive on different properties in a different way. For example, the

filter d can be transparent to all beamB having a property "p1" but reduce

the intensity of the beams having a property "p2" . If ^ denotes a beam

with the property "p." only, and bg denotes a beam with the property "Pg"

only, then it can happen that p^ (d,Jt) * p. (d,A) .
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Besides the transmission probabilities p^Cf^f.) , which we shall denote

in all practical cases pCf^f.) » we also need the filtration probabilities

p(b,fi) = S s(r) rfb,^) dr , . (a)

where a filtration ratio rtb.f^) = If^/l^ with If and 1^ denote the

intensities of the beams bf. and b respectively.

Concluding, if we have the filters in E then we can find provisory pure

beams and investigate only their properties. If we do not have the filters,

we must have some other devices for the determination of the initial states.

Such devices are the detectors D mentioned in the introduction. From all

counters of quanta which we have in E besides the counter g from

Statement 2 we eliminate all those which overlook some quanta independent of

their properties. They can be recognized by the proportional decrease of the

registered intensities of all the beams. We also eliminate all non-linear

counters. All those remaining are called D . Now with each beam b we can
P

associate registration probabilities by all the detectors D , A registration

probability p(b,d) is defined by the detector d as

p(b,d) - 8 s(r) r(b,d) dr , (3)

where registration ratios r(b,d) • Is/l^ vith I, and I. denoting the

intensities of the beam b measured by the detectors g and d , respectively.

(From this moment the detectors will be denoted solely by d. and the filters

by f̂  to differentiate between the two kinds of probabilities ptb,^) and

If the probability p(b,d) =* K , we can say that an average quantum of

the beam b has the property "d" (to be registered by the detector d ) with

the probability K . As usual, we must check the character of the observed

probabilities using different intensity reduction procedures.

To visualize what kind of effects can appear in the case discussed above,

ve shall consider a simple example.

Example. Let us consider four beams of classical objects produced by four

sources, i.e., the beams of balls in three colours: pink, green and blue. All

the balls behave in an identical way in all macroscopic experiments. So from

the point of view of a colour-blind observer they are identical. However, the

observer has three additional detectors: g, d and c ; g registers all balls,

d registers all pink and green balls, and c registers all green and blue balls,
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After repeated experiments, the observer notices that each beam b is

characterized by the two registration probabilities p(b,d) and p(b,c) ,

defined as before. The observer checks the stability of the values of

p(b,o) and p(b,d) by stopping some of the balls before they arrive at the

detectors. Of course, he discovers that the beams behave like classical

mixtures, but being unable to select the pure beams he can only represent

the beams "by Borne points in two-dimensional vector space. If all possible

mixtures of the initial beams oan be experimentally realized, then all theBe

mixtures can be represented by a convex set on a plane, The specific shape of

thiB set depends on the initial beams. One can say that each set is a convex

envelope of the set of the points corresponding-to the initial beams. Let us

visualize this in a simple picture (sea Fig.l),

The triangle ABC in Fig.l is a classical aymplectio cone ' t the observer

notices that the beams A, fi, C are pure and the beam D is a mixture of them.

Every ball of A has a feature Md" and does not have a feature "c" .

Every ball of B has both features "d" and V .

Every ball of C has a feature "cM and does not have a feature "d" .

The quadrangle Ct p', A
1» B1 is another set of the initial beams; now only

the beam C is pure and the other beams are mixed, but since we cannot separate

pure beams we can investigate the behaviour of all C, D , A1, B* beams in the

transmission stage.

The possibility of representing all the states by all transition
7)probabilities was pointed out (in a different context) by Haag and Kastler .

They also stressed that we know the transition probabilities only approximately,

due to the experimental errors and limited precision of the instruments.

However, the beams A*, B 1, C , D1 are represented by well-separated points

in the two-dimensional vector space, so we are not afraid of ambiguities.

If, in some other experimental situation, we obtained the same set

A* , B' , C , D* and the beams showed quantum character, then we would assume

that the beams A* , B* , C , D1 are pure but we would represent them in the

same way.
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Now we want to investigate.the behaviour of our beams in the trans-

mission stage.

Definition h. A classical transmitter T is a device which changes the beam

b in a unique way into a beam b- and which is not a filter. A quantum trans-

mitter T is a device which changes the pure beam b into the beams b with
a

fixed transition probabilities p^b^b ) and which is not a filter.

x s

Coining back to our example (classical case), we take as a transmitter

T the device which changes the colours of the balls in a well-prescribed way.

For example, it can change the beam b consisting of green and pink balls

into the beam b̂ , consisting of balls in one or two other colours. The

classical transmitter of this type has a characteristic feature of repeatability:

in the chains b, b-,» ̂ mm» "*' cycles must appear. The experimental values of

the registration ratioB r(bT,c) and r(bT,d) form sharp one-peaked probability

distributions s(r) , enabling the easy calculation of the registration

probabilities p(bT,c) and p(bT,d).

If we have a quantum transmitter T1 and a quantum beam b , there is

no reason for the above-mentioned repeatability. Also, if the transmitter TT

transforms the beam b into a set of well-separated beams b with the
s

transition probabilities pT(b,b ) , then the observed experimental values of

the registration ratios r(bT, ,c) and r(bT,,d) (at least one of them) should

form many-peaked probability distributions s(r) with sharp peak values around

r(b_,,c) = p(b ,c) and r(b_, ,d) = p(b ,d) , respectively. Therefore, analysing

the distributions s(r) , one can (in principle in this case) determine the

beams b and the transition probabilities p_,(b,b ) uniquely (at least if all

p^fbjb ) are different).

Wanting to represent mathematically the transmitters T and T1 , we

easily find that T can be represented by a matrix whose range of the domain

A'B'CD' must be a convex subset of the square OABC. The beam b_ can be

represented by a vector bL = (p(bT,c) , p(b-,d)). The registration probabilities

can be obtained as scalar products with the vectors e^ = (1,0) and ̂  = (°»l)»

respectively. In the quantum case, to each beam one can only associate a

probability measure on the square OABC . Then T1 transform a measures y^

(which are nearly 1 on the vectors b* and go quickly to zero outside) into
a measure ^ = J ] pT(b,bg)ula .

Remark 1. However, it can happen that the distributions s(r) cannot be

interpreted in a unique way by means of the transition probabilities PT(b,bs) .

It can even turn out that they can be interpreted in infinitely many ways. This
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leads us to a serious revision of the definitions of pure beams and transmitters.

As we know only the probability distributions str) characterize the ensemble

b*T, completely, the values of the registration probabilities p(b_,,c) and

plb^,,d) 'can characterize the ensemble ty, well only if the distibutions

s(r) are Bharp, symmetric and one-peaked distributions. In such a case, having

a two number classification of the ensemble HL , we can ascribe the same numbers

(with the experimental errors) to all member beams bT, € b-,, , and even to the

average quanta from each beam bT, . If the probability distributions s(r)

have a reach structure, then they only characterize the ensemble b_,, adequately

and we can say only about well-defined states of the ensemble b« . This

consideration leads us to the following definitions.

Definition 5. A state of the ensemble b can be completely characterized only

by the probability distributions s(r) of the filtration or the registration

ratios for all beams b fr b .

Definition 6. A pure ensemble b of pure beams "b is characterized by auch

probability distributions s(r) which remain approximately unchanged:

i) for the new ensembles b^ obtained from the ensemble % by

the application of the i-th intensity reduction procedure

on each beam b i b ;

Ii) for all rich sub-ensembles of b chosen in a random way.

Definition 7< A transmitter T is a device which transforms each ensemble

b into a well-defined ensemble b», and which is not a filter.

Now we come to the general conclusions of this long section.

Conclusions.

We have considered the experimental set-ups with and without provisory

maximal filters (p.m. filters). We also divide into two parts the discussion

of mathematical schemes useful for the representation of the results.

A. We have n-p.m. filters f,,•••,f , which we use not only for the

preparation of p.p. beams but also to analyse the final beams obtained in the

transmission stage. Now we can have two cases:

a) In the detection stage we always observe the p.p. beams, but starting

from the same p.p. beam b and using the same transmitter T we observe different

outgoing pure beams b. . However, they appear with more or less fixed transition

probabilities pT(b,bi) . In such a situation, we can represent the beams bj_

and b™ by the vectors in the n-dimensional euclidean space E 1 . The initial

beams b. can be represented by the basic versors e, and the beams b̂ , by

the vector lL in this space. The probabilities of finding the beams h± as
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the outgoing beam b T can be written in a scalar product form
• . - » - > " • • • . •

PT ' i = T*ei * Eactl transmitter T can be represented by a linear

operator acting in thlB space.

b) The beam b̂ , never turns but to be one of the p.p. beams b. . We

obtain only probability distributions s(r) of the filtration ratios

r(b^,f^) , which in general have rich peak structure. As we noted in the

example, it is possible to describe the ensemble b™ of the beams b^ by-

probability measures ]l^ on the n-dimensional vector space E_ . The vectors

b in E2 , corresponding to beams b , have as their components the filtration

probabilities p(b,f.) . The measures y^ , corresponding to the initial p.p.

beams b^ , are nearly equal to 1 on the corresponding vectors b*j and go

quickly to 0 outBide. The measures v^ are only characterized by all s(r) .

Only in some cases of the s(r) we can extract the transition probabilities

Pip('b,bg) in a more or less unique way. The beams b are different from

the initial beams b^ . The transition probabilities satisfy a condition

/_. PT("b|t>s) = 1 , contrary to the fact that for any chosen beam b_ from

the ensemble b T in general 2^. rlb^f^) * 1 . In other cases we can fit

our experimental data on s(r) with the different Pm(b,b ) in many different

ways. To have uniqueness ve have to accept that the ensemble b™ is only

characterized by all s(r) , as was already stated in Remark 1 and in

Definition 5. In such an approach there is no place for the notion of

transition probabilities,

B. The case when we have only n-detectors d-j-'-.d is mathematically

equivalent to the case A.b). We have only to replace the filtration ratios

and probabilities by the registration ratios and probabilities, respectively.

In all cases we should check the purity of the ensemble b™ according

to Definition 6. Sometimes we can Interpret the values of p_(b,b ) found,
l s

due to the mixed character of the initial ensemble b with respect to the

property analysed by the transmitted T . Such a possibility explains the

term "provisory" occurring in the definitions of the maximal filter and the

pure beam. A contrary situation is also possible. Mixed ensembles with

respect to some properties can behave like pure ones with respect to the

properties analysed by the transmitter T .

The careful differentiation between filtration or registration ratios

and the transition probabilities leads us to the conclusion that, in experiments

of the type considered, if we succeed with the extraction of the transition

probabilities from the experimental data, then in all cases A and B we can

represent the beams by unit vectors in the n-dimensional Hilbert space for

A.b) and B and the transition probabilities by the appropriate scalar products



between them. It stems from the fact that for each ensemble b we have a

finite number of beams b and the transition probabilities p(b,,,,b ) , which

can be embedded in the Hilbert space. However, the following new features

appear:

i) The set of physically meaningful vectors is restricted to those

corresponding to the b. (initial beams), to all beams b.^ ,

b i T T ••• (where ^ are all available transmitters), and also

to all beams bg extracted in the analysis of the data. If we have

two vectors btj. and b™ we do not know whether b_ + b,-

corresponds to a physically realizable beam btp_ . :

ii) The physical interpretations have only Bome scalar products of the

vectors of the type K ^ T I ^ - S I = p-O^b-) , where b are found
In the analysis of all s(r) describing %. and D are vectors

t i a

found for all transmission
processes form an orthonormal basis of the Hilbert space considered.

If we accept the philosophy of the Definitions 5-7 > then the Hilbert space

description loses its sense, since the transition probabilities p_,(b,b ) do

not appear.

However, in all the cases discussed above, having a lot of experimental

results we can try to find a quasi-theory enabling us to interpret the data

and to predict new results.

So we find that the usual quantum mechanical description can turn out

to be not too poor, as was suggested in Refs.lU and 15, but too rich or not

very appropriate.

The experimental scheme discussed so far is structurally similar to that

used for the investigation of the scattering phenomena of elementary particles.

Instead of simple filters and detectors we use many complicated instruments

which, based on our previous knowledge, enable us to prepare and classify the

initial and final beams. The different kinds of chambers and emulsion layers

enable us to observe one-particle beams; but, in fact, we observe only

statistical regularities characterizing ensembles of such beams. The scattering

process can be understood as specific transmission processes in two ways. One

interpretation is that one-particle beams, for example proton beams b , are

transmitted by the transmitters = protons T leading to a many-particle beam

(b ) = b . Another interpretation is that initial beams b consisting
P Tp p-p P~P

of the two free protons are transmitted by the transmitters = strong p-p inter-

action into the final beams b f . We still have an additional interpretational
P-P
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f
freedom* by a transformed ensemble b we can understand a set of all final

^ p—p

free particle beams k___ or a set of strongly interacting proton-proton beams

b , which are visualized by the interaction points in the emulsion layers or

the photo-pictures from the different chambers. In this second case, the final
f

free particle beams b can be interpreted as arising in some kind of
P-P

measurement process performed on the beams b
P-P

One could argue that the formalism discussed in this paper is not very

applicable, since in elementary-particle physics we deal with the continuous

variables characterizing the beams. However, in all preliminary experimental

data ve characterize our initial and final beams by intervals of, in fact,

continuous variables. All these analogies, and the fact that a set of the

different scattering processes which can be observed between elementary particles

is very limited, show the need for careful investigation of whether the quantum

mechanical unitary S-matrlx language is not too rich for the description of the

observed phenomena. We shall investigate this problem in detail in the sub-

sequent paper.

Now we give for completeness a definition of instruments, leaving the

analysis of the practically-realized instruments to the subsequent paper.

Definition 8. An instrument I is a device allowing the description of each

beam b in terms of earlier-known categories (parameters). The ascription of

these parameters involves the assumption of the applicability of some earlier-

known theories. The instrument, by its interaction with the beam b , changes

it into a beam b_ . The repeated application of tbe same instruments usually

leads to slightly different values of parameters ascribed to our beams. The

measurement made by the instrument for all beams b characterizes the
•v

ensemble b . An ideal instrument is such that we can assume that b_ - b .

Generally, one could consider the instrument which can change the ensemble

b into the different ensemble bj * b . Analysing the results of many measure-

ments, one could find the characteristic features of the instruments used. In

spite of the fact that bj is different from b , the values of parameters

ascribed to b in the measurements can be used in some way for the labelling

of the initial ensembles b or bj. However, in practice we try to use the

ideal instruments. A good example of such instruments are the filters fi

as applied on the beams bf. , different kinds of chambers and so on.

At the end of this section we should like to point out that, in spite of

the fact that we have been talking about ensembles of quanta beams, our results

can be generalized for experiments with ensembles of identical physical systems.

Instead of filters and detectors, we should have other more complicated

instruments to determine the states of the initial and final ensembles.
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We should also like to remark that the particle character of our beams,

implying measurement of the team intensities by counting the quanta, is not

necessary. When discussing states of ensembles b , ve can measure the

intensities 'and the appropriate ratios for some non-particle beams. The particle

character of the beams was essential in the discussion of the pure beams and

of the non-classical character of the probabilities.

Now we pass to the polemic with some views presented in papers on

axiomatic quantum mechanics.

Ill, POLEMIC WITH AXIOMATIC QUANTUM MECHANICS

The great success of quantum mechanics in describing many atomic and sub-

atomic phenomena, and the fact that classical physics is a limiting case of

quantum physics, encouraged people to think that a general framework to describe

all physical phenomena had been discovered.

To prove this statement one should find such a set of the natural

assumptions on S, B, F, D, T and I characterizing a physical process of a

measurement in general, which would imply uniquely the usual quantum description*

The more general attitude was accepted in the papers of Birkhoff and

von Neumann , Mackey 13', Jauch. ' , Piron 9'* \ Finkelstein *)«5',

GunBon , and others, where the so-called quantum logic of the propositions
12)concerning a physical system was studied. In the papers of Ludwig and

3)Dahn the state-effect structures were investigated; in the papers of
17^ l8^

Pool ' state-event structures.

All these studies aimed to find such a set of natural axioms which would

imply uniquely the use of the complex Hilbert space language or the algebraic
7)

Haag-Kastler language for the description of the states and transition

probabilities. The required set of assumptions was found in many axiomatic

approaches; however, the naturality of, some of the accepted assumptions is

questionable. They were all chosen by analogy to the experiments performed

on the optical bench with the use of colour filters, Nicol prisms, and other

devices. The states of the differently polarized light can be represented by

all rays in the complex two-dimensional Hilbert spaced (2,C) and each state

can be realized in the laboratory. To each linearly polarized beam there

corresponds in a one-to-one way an appropriate filter - the Nicol prism or

polarization filter - which is transparent to it. So one has, in principle,

in uncountable amount of filters in the laboratory, since in that case nearly

each rotation performed on the Nicol prism enables its interpretation as a

different filter.
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This special case strongly supports the commonly accepted philosophy in

quantum mechanics, according to vhlch each pure beam state is prepared by

an appropriate maximal filter. Also the filtration probabilities of the pure

beams (2; in that case are equal to the transmission probabilities (i)

between the corresponding filters and can be expressed by the scalar products

of the unit vectors in <yt(2tC) representing those filters. So in fact,

instead of talking about the states, one can talk about the filters and the

transmission probabilities between them.

This observation gave Mielnik the force to attack the usual quantum logic
lM

approach. His main starting point was the assumption that the set of filters

with the geometry implied by the transmission probabilities is the main

characteristic of all quantum phenomena (however, Mielnik, instead

of saying "transmission", says "transition*). Therefore, to investigate the

problem of the universality of the orthodox Hilbert space representation, one

must study whether the above-mentioned geometry allows the representation of

the filters by the unit vectors and the transmission probabilities as scalar
lk

rs
15).

products. In his two clear and provocative papers ' , he realizes his

programme and comes to the following conclusions

" ••• It now becomes clear that the orthodox classical and orthodox quantum

systems do not represent a unique alternative for quantum theories, but they are

only particularly degenerate members of a vast family of "quantum worlds"

which are mathematically possible ••• "

" ••• We thus conclude that the concepts reviewed in this article represent

the missing element necessary to convert non-linear wave mechanics into "mechanics

of non-linear quanta. ••• "

Though there is no mathematical fault in the papers * , in our opinion

the above statements are completely unjustified. A simple misunderstanding is

due to the interpretation of the transmission probabilities as the transition

probabilities. These latter are a basic notion measured in all our experiments

and depending on the dynamics of the phenomena. The transition probabilities

can be directly connected with the cross-section, branching-ratios, life-times

of the excited levels, and so on. The value of quantum mechanics consists

in its ability to predict those probabilities in the agreement with the

experimental data. On the other hand, the transmission probabilities are

the static properties of the filters and the beams and can only be used (if

the filters exist) to characterize the initial and final beams. A careful

analysis of the general experimental set-ups made in the previous section

allowed a clean, differentiation between all kinds of the probabilities (1,2,3)
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and the definition 6 divorced the concept of a pure state with a concept

of a maximal filter. So the Mielhik statement has to be changed into the

following statement:

• > ' ' • • .

There can be many sets of filters whose transmission probabilities do

not allow the representation of them by the unit vectors in the Hilbert space

with the transmission probabilities being equal to the appropriate scalar

productB.

Besides this main criticism, we have other critical remarks concerning

the paper . In this paper the maximal transmission systems are considered.

Those systems have so rich a class of transmitters that each physical state

can be transformed in any other by means of the appropriate transmitter.

They also have, in general, an uncountably rich set of maximal filters. To

each pure beam there correspond two filters; one is completely transparent to

the beam, the second is completely non-transparent. In our opinion, dealing

with such rich classes of filters is rather unrealistic. Therefore, we cannot

accept the second-cited conclusion concerning the quantization of non-linear

theories. The procedure proposed in the paper can be devoid of any physical

meaning.

To illustrate our arguments we shall discuss a nice example of the drop
Ik)

of non-Hilbertian quantum liquid from the paper :

M ••• Someone looked at a small spherical glass bubble: inside there

was a drop of liquid. The drop occupied exactly half of the bubble in the

shape of a hemi-sphere. He was able to introduce inside a thin, flat

partition dividing the interior of the bubble into two equal volumes. He

tried to do this so that the drop would become split. However, the drop

exhibited a quantum behaviour: instead of being divided into two parts, the

drop jumped and occupied the space on only one side of the partition. He

repeated the attempt, obtaining a similar result. He began to observe this

phenomenon and discovered that each time the partition is introduced the drop

chooses a certain side with a definite probability. This probability depends

upon the angle between the partition and the initial surface of the drop. If

the drop occupied a hemisphere s and the partition forces it to choose

between the two hemispheres r and r1 , the probabilities of transition

into r and r1 are proportional to volumes of sflr and sflr' . He was

struck by the analogy between positions of the drop and quantum states and

between the partition .and the macroscopic measuring apparatus. He wanted to

formulate the quantum theory of this phenomenon, but he realized that he could

not use Hilbert spaces because the space of states of the drop was not Hilhertian
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We disagree with that conclusion and we analyse the behaviour of the

observer. To make some predictions he considers an ensemble "b of the above-

mentioned bubbles b . Before starting to divide the liquid drop he fixes

the positions of all the bubbles to make the surfaces of all the drops

horizontal. He chooses a well-separated set of N partitions t. labelled

by the angles a. between partitions and the surface of the drops. After

many partitions have been made, he observes a 2N possible positions of the

drop after partitions. Repeating the experiments with fixed partition t of

the ensemble b he finds out the probabilistic behaviour of the drops with

some fixed transition probabilities to the final states. Before accepting

a usual quantum interpretation of the probabilities he investigates the purity

of the ensemble b as described in the definition 6. If the ensemble b

turns out to be pure, he accepts the following interpretation. The partition

t is some kind of interaction exerted on the drops BO the partition t is

some kind of quantum transmitter transforming the ensemble b into pure

ensembles \>^ and b£ with fixed transition probabilities, P+(b,b,) and

Pt(b,b2) . Of course, those probabilities for all the partitions t. we can

represent as a scalar products in 2N dimensional real Hilbert space of the

vectors ty.. corresponding to the bt with appropriate versors b^ fs.

Naturally, the scalar products b^-'b^p have no physical meaning. Therefore,

the Hilbert space description of this phenomenon is in some sense too rich

and not too poor, as was claimed in Ref.lU.

Returning to the discussion of axiomatic quantum mechanics, we state that

in our opinion the problem of Birkhoff and von Neumann, although skillfully

solved in the different axiomatization schemes, was stated in too general a way.

In our opinion, it is not very economic to talk about all possible propositions

concerning the physical systems in general. In all practical case, we at first

perform the experiments and the analysis of the results gives us a set of

physically meaningful propositions about the system. This set depends on the

particular experimental set-up and its richness depends on the richness of the

observed phenomena. The careful analysis of the particular experimental set-ups

can lead us to the discovery of new, more economical and fruitful descriptions,

though the old language of Hilbert spaces could be used. Being too general, we

cannot get insight into such problems and we cannot hope to arrive at the

conclusive new statements to be verified in the experiments.

Finally, we should like to question some axioms of Gunson and Pool

Gunson considers a set of propositions P and a set of states S . States are

the probability measures on the propositions, taking the real values from 0

to 1 . The axiom A.k is: "For every a, b e P we have a fe b if and only if
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f(a) <=. f(b) for all f 6 S . For the propositions, the relation a4 b

is equivalent to the usual implication relation a implies b , Gunson

also uses the following definition of the orthoganality a l b {—) a £ b' ,

where b'1 is the logical negation of the proposition b .

Counter example. Let us consider the following situation. We have only two

pure ensembles f and g and two detectors a and I , The only things we

can measure are the registration probabilities (3) by those detectorB. With

each detector we can associate two propositions. For example: the proposition
11 d" - "the physical system from the ensemble is registered by the detector d ",

and the proposition "d1" - "t*e physical system from the ensemble is not

registered by the detector 'd •'*. As we see for f € f" we have p(f,d) • f("d")

in Gunson's notation.

Now let us assume that we observe the following values of p(f.d) and

p(f,JO.: f("d") = l A , g ( V ) = 1/3 , f(MiM)•- 1/8 , 8 (
n * " ) - l / 7 ,

f((Id"') « 3A , g("d"() - 2/3 . f(ttAin) - 7/8 , g W ) - 6/7 .

As we see, the propostions "d" and "A" satisfy the axiom A.I* so

.«d" i nin which is equivalent to "d" implies "ln , but such implication

is physically completely unjustified. Now, using the definition of the

orthogonality, we find that d £ -d» • therefore, d J- d .

Pool in his papers accepts the following definitions and axioms:

Definition I.I. An event-state structure is a triple (E,S,P):

1) E is a set called the logic of the even-state structure and an

element of E is called an event;

ii) S is a set and an element of S is called a state;

iii) P is a function P : E x S-»[0,l] called the probability function

and if p € E and a f S , then P(p,a) is called the probability

of the occurrence of thei event p in the state a ;

iv) if p € E , then the subsets S1(p) and SQ(p) of S are defined

by

S-^p) « {a€ S : P(p,a) - ll

SQ(p) = {etc S ; P(p,a) » 0} .

Axiom 1.3. If P, 1 t E and S±(p) C S1(<i) , then SQ(q) C S0(p) .

Axiom I.U. If p fc E , then there exists an event p1 6 E such that

S1(p
t) = S0(p) and S0(p') =
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In our opinion, theBe axioms are not general enough. For example, if a are

the states of ensembles consisting of •beams, and p are the events.of the

type (transmission through the filter p ) , then the P(p,a) can tie the

transmission probabilities. In this case, the properties and the richness of

the sets S^p) and SQ(p) depend on the beams and the filters in the

particular experimental set-up and it is easy to give an example for which

the Axioms 1.3 and l,k are not satisfied.

The above two examples support our thesis that it is extremely difficult,

if not impossible, to axiomatize all possible experimental set-upB in the

natural way.

Now we pass to the last Beetion, where we formulate a programme of

future investigations which could enable the answer of the title question of

our paper.

IV. A PROGRAMME OF INVESTIGATIONS '•

We could not answer the title question of this paper, since we have been

analysing some hypothetical general experimental set-ups. To answer the

question whether the Hllbert space language is too rich to describe some

physical phenomena, we should carefully analyse all real physical set-ups

and observed phenomena, starting from solid-state physics and ending with

high-energy elementary-particle physics. Such analysis should be done by

physicists who really work in the specific branch of physics and who know

all the subtleties of the experimental set-ups and of the theoretical analysis

used to explain the data (to obtain the curves).

It is clear that it is quite difficult to find out that the language

used is too rich; moreover, with the help of computers a beautiful agreement

with the data can be obtained in most cases. However, one feature of the too

rich language is the possibility of obtaining the same predictions using quite

different models, which is equivalent to the lack of the unique theoretical

explanation. The observation of such a situation can be a first hint for

future investigations. In our opinion, one more or less sure method is to

find scuh rigorously derived experimental predictions of a general nature,

which can be verified in experiment, and to test them with full objectivity.

In elementary-particle physics it can be the unitarity of the S matrix. The

other method is to try to invent more economic language. In the discussion

of the general experimental set-up, such possibilities were indicated.

Especially interesting was that of Remark 1 where the notion of the transition

probability disappears.
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The other interesting problem is an operational status of quantum

mechanics in its applications to many new phenomena. The operational Btatus

of quantum mechanics was discussed on the "basis of experiments with polarized

light and Stern-Gerlach experiments, Quantum mechanics as applied to high-

energy elementary-particle scattering was not discussed in that context.

Another'important problem is to investigate to what extent the good

results which we obtain depend on all our particular assumptions and on the

basic assumptions of the theory we used. Many models in elementary-particle

physics are believed to be checked by the agreement of their predictions with

experiment and are supposed to have a deeper physical meaning (not only to be

a convenient pararaetrization of the data). However, sometimes a careful

analysis of the results shows that they are not deduced from the assumptions

and they can only be rigorously derived from another set of assumptions which

can have nothing in common with the physical ideas involved in the initial

assumptions. To give an example, a careful analysis performed in the papers '' '

showed that the additivlty assumption in the quark model applied with success

for high-energy elementary-particle scattering can have nothing to do with

the physical picture of a static quark model where the quarks are treated like

hypothetical constituents of the elementary particles.

The programme which we have presented can be summarized as follows. Let

us be more critical of the models we propose, of the conclusions we obtain, and

let us check the operational status of the language we use to deal with data.

The investigation in this direction will be continued in the subsequent

paper.
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