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IS THE HILBERT SPACE LANGUAGE ‘TOO RICH?

ABSTRACT

_ In order to ansver this question, we analyse différent phenomens,
ocgurring in general experimental set-ups arranged tc analyse the properties of.
some unknown beams of particles. . We arrivé gt the conclusion that some-
times the Hilbert apace language appears to be too rich and also that
there are some phenomena where the notion of  trensition probability dis-'
appears and any attempt to introduce it leads to the poseibility of infinitely-
many inequivalent descriptions. Our analysis encouraged us to ask the question
whether the Hilbert space langusge is not too rich in the more realistic
situations, for example to deal with high~energy elementary particle
scattering phenomena. A Tprogramme of investigations in that direction

is formulated.

In the polemic with axiomatic quantum mechanics it is shown that
the ©pure state concept can be formulated independently of the existence
of any maximal filter ahd that some claiggf%here can exist infinitely many
non-Hilbertian quantum worlds are unjustified.

I. INTRODUCTION

AAxiomatic‘quantum mechanics aimed.to prove the uniqueness of the gquantum
mechanical Hilbert space description for gll future phenomena. The efforts
were concentrated on a search for such a set of axioms, concerning the general
gtructure of the propositions which can be sald about the physical systems,
which would'imply the usual Hilbert space or algebraic representation.

- The investigations started by Birkhoff and von Neumsnn }) and con%inued
3)-6),8),9),12)-18)

in many other papers, led to different axiomatization schemes

with the required propertieé. Though some of the accepted axioms did not seem
to be natural, the general belief is:that the problem is solved and that we
cen freely use the usual Hilbert space language in future. One can claim that
it is not true,because we have to deal with the rigged Hilbert epaces and
because for the continucus spectrum the eigenvectors are only the distributions
acting on some nuclear space 5? s but in all practical cases we can use wave
packets  and regulafized fields to obtain measurable results in the

framework of some Hilbert space.




Axiomatic quantum mechanics was vigorously attacked by Mielnik 1h)’15),
who claimed to prove that the Hilbert space description is only one degenerate
case of the infinitely many non-Hilbertian qﬁantﬁm worlds to be observed in the
future. ﬁIn this paper we show that such conclﬁsions &ré completély unjustified.
Mielnik's fault lies in the uncritical acceptance of the assumption that the
physical transition probabilitiés betweén somé pure statés ere equal to the

static transmission probabilities between two maximal filters used for the
‘preparation of these states,

In our opinion, the approach of axiomatic quantum mechanies 1is foo general
to give insight into some specific physical phenomens which can appear in
different experimehtal get-upe. For thié reason, we analyse the general
experimental set-up ‘E which can he used to investigate the phenomena
characferizing the ensembles of particle~beams. We assume that our experimental
set-up E can consist of the following devices: ' '

1) the sources S which produce beams B ;

ii) the filters F which allow the division of beams into sub-beams
having some common properties;

iii) the trensmitters T which change a beam b into a beam 'bT ;

]

iv) the detectors DP which register the intensity of the beams having
a property P

v) the instruments I ; A beam b enters into an instrument, the

instrument measures some property, and a beam bi goes out.

However, two observers investigating the same beam,but equipped with a
different set of devices,can observe different phenomens and discover different
mathematicel schemes to describe them. Keeping this possibility in mind, we
have been trying to analyse the different cases of the experimental set-up E,
differing by the richness of the heams and the devices. ‘

A careful ansalysis leads us to new definitions of filters, pure ensembles
and to the important coneclusion that in any considered case the Hilbert space
desceription turns out to be possible, However, sometimes the data does not allow the
extraction of the transition probabilities in a unique way, so it is more
reasonable to abandon the Hilbert space description and to try to explain a
ceusel evolution of the whole ensembles. Another feature which appears in our
analysis is the fact that only some vectors and some scalar products in the
Hilbert space description of the phenomena have s physical meaning; 80,1in

some way,the Hilbert space language is too riech.




The“too rich’ language mskes possible.that using more or less
phenomenolbgical modéls;wé can always (in no uniqué way ) ékplain %hé'data |
without really br;édéning the ﬁnaé_rst'a.naing of them. The above-mentioned
successes in the explanation of the dste deepen’ the bellef in the basic and
unchangeable charactér of théllangﬁ&éé ﬁaéd and bﬁild 8 psychological barfier,
meking the discovery of a new, more économic and 1é93 ambiguous,language much
more difficult.

All thege considérgtions encourégéd us to raise the important question
whether the Hilbert space language is not too rich to éiplain the observed
physicel phenomena, for example in high-énérgy eiementdry—pa:ticle physics.
A natural question erises: how could we find out- whether this is the case?
Although it is evident now that we cannot assign to all vectors in the Hilbert
Fock space the ﬁhysically'realized sfates of the elementary particles system
and thet not all scalar produéts,eah be pracfically measured, yet it does not
mean that the.Hilbert space language is too rich. Similarly, in classical
'~ mechanics not every solution of.an arbitrafy Newton equation has & practical
meaning’and.this does not mean that the language of classical physies is
inappropriate.- ' ‘ '

‘ To show that the Hilbert space language is too rich to desl with the
scattering phenomena of elementary particles, we would have to show that, for
example, the assumption of the unitary S matrix (which is derived using the
aasumptibn that any vector in the Hilbert state can be teken as an initial
state) is violated. For example, we would have to find two such initial
realizable states I1£>>and_|12)5which in our formalism must be represented.
by the orthogonal vectors, and show thet the states 'Si{)‘and |812> cannot be
represented by the orthogonal vectors in the Hilbert space.

A careful analysis of these problems will be continued in the subsequent

paper.
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II. GENERAL EXPERIMENTAL SET-UPS

At first we shall try to be as general.as‘possible, so we shall consider
two sets of objects: a set of sources and a set of devices. The interactions
between beams, produced by the sources, and the devices glve us the informstion
about them which can ensble us to make physics. In general,the information
obtained is not unaﬁbiguous; so one has to accept some additional interpretational

assumptions.




Usually one acts in a different way. Hﬁnting to. investigate beams, one
constructs some devices based'on'the'knowlédgé of classical and quantum physics.
Such devic?s'make possible thé'déstription_of thé'unknown béams in térms of the
quanfities known before (liké_mass, momentum, énergy, chargé; spin, étc.). Such
an approach is very reasonabié, Bincé it assﬁmés thé continuity of the science
which worked so well before. Howévér, let us c¢ite Bohr 2): "The main point to
realize is that a knowlédge présenta itself within a concéptual framework
adepted to account for previoug experience and that any such frame may prove

"

too narrow to comprehend new éxperiences e and " ... when speaking of a
conceptual framework we refer merely to the urambiguous logical representation

of relations between experiences +++ ",

Keeping this in mind, we now forget sbout our sclence and we assume that
we know nearly nothing about the sources and the devices. We want to
investigate the problem of how we should desl with that case eand vhat kind
of language could be used to describe the observed phenomena. Let us start
with some statements: | '

Statement 1. The sources B8 and all the devices used in the experimental

gset-up are given a priori. They should have the very important feature of
reconstructability, by which we understand that identical set-ups can be

constructed in any other laboratory at any time.

Statement 2. Among all the devices, we must have a counter g of quanta
which must be used to find the intensity of the beams. This counter is at
least one "classical" device which is necessary to make quantitative "quentum"
physics. The problem is to construct such a counter for unknown beams; but

~ let us assume that we have it. It need not be an absolute counter, like in
Ref. 16, but it should be the most sensitive one available.

Statement 3; Using the counter g , we can cbgerve the changes of the bheam
intensitles after their interactions with the devices. Those interactions
give us the information about the beams and the devices we have. This

informetion allows us to clagsify the beams and to find among the devices

such oblects as filters, transmitters, etc. Of course, the information about

the beams depends essentially on the devices used, and vice versa the information
about the devices depends essentially on the beams .which we have at our

disposal. So everything we know is to a large extent relative, and we can

never be sure that. in the future we shall not discover other beams and devices
which will change the ‘interpretstion of some old phenomena or which will force

us to find a new theoretical language to desceribe the new ones. Similar views
are contained in Ref. 14. In many cases it seems to be improbable, but it

cannot be excluded.
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'étatement‘h . Having eome knowle&ge bf thé'ﬁeama and devicés,lqe have to
choose some of them for further analysia. The chosen devices can be divided

into two §roups"

" a) preparatorw'and analysing devices,

b) transmitters. i

- Buch a division corresponds to thrée stages of the experiment in which they
will be used: | _ ' : '

' i)} preparstion,
ii) transmission,

141) detection.

Statement- .~ In the preparation state we classify and prepare the beams., We
introduce the concept of pure and mixed beams. Knowing the properties of the
pure beams, we can aacribe sfateq to them. fThus tﬁe preparatory stege enables
us to find a set of initial states whose change in the tiansmissidn stage we
should try to explain, | |

Statement 6. ' In the transmission stage we let our beams go through some

chosen devices called transmitters. By transmitters we can understand also
the action of the external flelds. If the beam was under the influence of
the external field for the time At ‘before détection, we can say that it

vent through the transmitter T{At). Thus we can heve the approximately
instantaneous chaﬂge'of the beam or we can obeerve its more or less continuous
evolution. : ' '

Statement 7. After the transmisaion stagc we classify obtained beams and we
try to find some mathematical language and a model allowing the interpretation
of the observed regularities.

Now-we have to find out the meaning of some-terms which”éppearad in these
statementé.‘ Tt turns ocut that the definition of filters and pure states is not
obvious. We cannot see the detalls’'of the transmission process as it looks
inside & device. Theréfore what we know is the change of intensity of the
incoming beam,

Before starting a more detalled discussion, we must edd some
assumptiona in the spirit of Statement 1. We have to work with an‘gpproximately
stable source, since in order to make predictions we have to know the intensities
of the beams rel&ing on previous measurements. We must also assume that our
devices have no memory and act in the "same" way on the "same" beams. So in
fact w€ are'always dealing with ensembles b of the identically prepared
beams b . Perfbrmihg many ekpériments we find the properties of the ensembles
b and often we can asacribe them to every beam of the ensembles b . If it is
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possible, we shall talk about the beams and their properties instead of talking
about the er_xsgmblles.'_‘ln our ca.Sé wé cannot alweys prepare arbitrary mixtures
of the produced besms. First we have to check whether the beams behave in

& "classical” or in a "quentum" way. We now make & short digression about such
behaviour, which will bé s short répetition of wéll-known things. ‘

If the beams and Qevices bghave classiqally, thén_éach quantum of the
beam can be characterized by gome propértiés, posseaséd in an attributive way,
which cen be found with the help of measurements. These measurements can by
no means change the properties of the quanta. A device d which is transparent
only to the quanta having a property "d" is calleds classicel filter. Such a
device is of course idempotent, which means that.it is neutral to all quanta
to which it is transparent. If the quanta also have ste‘other properties, we
can construct, in principle, meximal filters -~ transparént only to the quants
heving all properties the same. Pure beams are those which go through the
maximal filters without change. '

In quantum physics, a quantum can have a property with certainty, but only
up to the moment of the measurement of another property which is incompatible
with the first one. To discover the quantum behaviour one must show the
incompatibility of some properties. For this purpose we must find at least
two ldempotent and incompatible devices 4 and & to perform the following
experiment with a beam b . We transmit the beam b +{through the device 4d
and thain a beaﬁ bd y for which a device 4 is transparent. Now we transmit
the beam b, through the device £ and we obtain & besm b,, of smaller
intensity. Now the device £ is transparent to the beam ban . Pinally, we
transmit the beam bdl through the device 4 , cobtaining & beam b If
the beam b

aka *

a%d # bdﬁ , then we can say that the beams and devices do not

behave in s classical wsy.

If, on the other hand, baga = Pap = Pgq = Papag 00 other devices
incompatible with d and £ cannot be found in our experimental set-up, then
we can say that the beam bdl ie pure, the devices 2 , d and £+d are
classical filters and the device £-d 1is a maximal filter in our set (for
simplicity we exclude the existence of other'compatible more restrictive filters).
Each quantum of the beam b,, has two properties "4" and "&" - the filters
d and & . are trensparent to it.

In the quantum case our classical picture of a filter has to be completely
changed., We cannot‘say. as in Ref, 16, "+++ quantum mechanical filter selects
single particle properties"”. A1l the quanta of a beam b, have the same
property "d" (the device d is to them transparent), but after going through
the device £ not all of them can still have a property 4 . So the idempotent
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device £ does not select the quanta having e property “L" tbut it only
transforms with a probability p(d L) some quante having a property "d"
into a quanta. having 8, property' "4"  and absorbs ones which are not trans-

e

formed.

We cannot explain this probabilistic a.pproach asauming tha.t the beam b a

18 & mixture of the quanta labelled by hidden parameters & ‘constant in
‘time and that the device £ 1s & - classical trensmitter which can change the

property "d" and the parameters £ in a well-defined causal wey depending

on their initiel velues. The non-exiatence of = hidden parameters of this
kind vas shown in a different formalired langusge by Jauch and Piron 9) 8o
we have to assume thet the devices & and 4 act in an intrinsically
pro‘babiliatic WY, but now we can a.ak whether it 1s possi'ble to check that the
* beam - bd 15 a pure ‘ueam.. '

Let us, for example, ussum that the bea.m bd or amm intemity
I isa mixture of two bam of intunsitiea I1 ‘and 12 comistins of ‘
quanta 'A' end B, resp’écﬂbiwly.- Let the device & act in the follmri.ng way!

it transmits each quantum A with a probability 8 a.nd eha.ﬁgea it
into & quantum C -

1t transmite each quantunm B with a probability b and changes it
into a quantum D ; '

it transmits all the guante D and. C without change.

Let the device 4 a.ct 1n a aimila.r way:
it transmits each q_ua.ntum ¢ with a prqb‘abilif.‘y ¢ and changes it
into & quantmh A _
it t.ranamits each qua.ntum D with a probn.bility k end changes it‘
into a quantum B ;

it tra.nsmits without‘ change &1l quantd A and B .

The transmission probsbllities pld,2) are strictly defined in the following

way
p(da,t) = 8 s(r} r(d,ﬁ) ar - (1)

where § denotes a sum or an integral over all values of r{d,2) ; s8(r) is
normalized to the unity probability distribution of'the ration r‘r('d,!.) 3 the
ratios r{d,t} = IR,/Ia where I, ‘and I, are the intensities of the beams

bd and © ag for all beams b € b . All other probabilities met later are
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defined in a similer way. The probabilities p(d,2) and p(2,4) must be the
game for all pairs of d-l and -4 , respectively, occurring in the chain
dwf-d-2-d-% of the experiments with the ensemble b . Tt gives us the
constraints on the possible va,lues of a, b, ¢,k . Other cbnstrainta are
obvious: 0 < I,,I, < I, I1 +I, =1 , 0 < a;‘b; c;k,< 1. If we analyse

these constraints we come to the following corcllary:

Corollary. The probsbilities a, b, ¢,k must sastisfy thé following condition
=b=w ; then pl(d,E_) = (a + bA)/(1 + 1) and pk(ﬁ.,d) = w/p;\(d,!_l)
vhere A = I2/I1 . Bo for every two experimental numbers pk(a,z) and Pl(l’d)

we can adjust one parameter w to make the above interpretation possible.

However, as we see pl(d.l) depends on tﬂe relative intensity X of the
two hypothetical subbeams} 80 we can verify our hypothesis by trying to change
A in the beam b; » We do not have any other way than to cause the decrease |
of the intensity of the beams bd £ bd by different methods., If we do not
obtain different values for pk(d,Z) and pk(L,d) s then we must reject our
hypothesis and state that it is not legitimate to assume that the beams bd
consist of subbeams, so they caen be celled pure. But by the expression
"a pure beam" we should not understand a beam consisting of identical quanta,
since the term "identical” is classical and means "behaving in the same manner
in 811 situations". The devices £ and 4 do not treat all the quanta from
the beams b, and b in the same way. We cannot understand the mechanism
of thlg differentistion and also usually we do not observe separate stages of
the transition, We just observe the behaviour of the beam bd' as a whole and
find the stetistical regularities. Therefore, in the theoretical analysis of
the process we should not represent the transmission of the besm bd by a set
of yes-no experiments with each gquantum, but more properly we should talk sbout
the properties of the beams as a whole and about states of the beam instead of
talking about the states of the single quanta. In some situations it can happen
that only the states of ensembles 45 have & precise meaning. We shall discuss
such situations later. This wholegess of the physical phenomenon in the

2)

microworld was wisely pointed out by Bohr msny times.

We have spent so much time discussing the devices £ and d because
they behave in a way analogous to the behaviour of the tourmaline plates
which are usually called filters. We wanted to show to what extent they are
not classical, if discussed in terms of corpuscular language. Their filtering
properties can be understood in the language associating a wave to each beam.
We also wanted to gef en intuition enebling us to define filters and pure

beams in our poor informetion system.
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Derinition 1, Filters are devices. which:

1) are idempotent-

ii)# for all beama ‘be B _énte;ing an arbitrary,chaih consisting of the
filters £, f,, +**, the trensmission probabilities for each pair
fi-fj are con;tant; pb(fi'fj) = constl(b) . pb(fj’fi) =(ﬁnst2(b) 3

i1i) from 8ll devices D sstisfying the conditions‘i) and 1i), for each
device d we can find a set 'Od' consisting of all devices '£J which
have the seme transmission probabilities to all other devices from D

as & device 4 has, namely

' for all b¢ B end all 4, ¢ nf.

A filter 1s a minimally transparent element in the set °d + This mesans that
Ibf £ L, for all LJ € od and all beé B'. If the minimally trans-
parent element in Od cannot be found, then we call all the devices 0d

relative filters and to further analysis of the beams we choose,one of them.

The long property iil) enables us to differentiate between ciaaaical
filters and some similar classicel transmitters. Our definition of the filters
is aifferent from that given, for example, in Ref. 15, and many relative
filters from Ref, 15 are treated like normal filters, as they should be.

Definition 2, Provisory maximal filters are the minimally transparent
elements in maximal sets of the compatible filters. -

| Definition 3. A provisory pure beam is one for which the provisory maximel
filter is transparent.. We use the term "provisory" since we are not sure
whether the get of filters which we have in E 18 a maximal one. In the
transmission stage some provisory pure beams can behave in a way suggesting
that they consist of the two sub-béams_not gseparated in the preparation stage.

Usually it is assumed that two filters 4 and & are cheracterized by
the transmission probability independent on b . In this psper we assume that
the beams can be characterized by many properties and the same filters can
be sensitive on different properties in a aifferent way. For example, the
filter 4 can be transparent to all beams having a property "pl" but reduce
the intensity of the beams having & property "pa" .+ If b, denotes a beam
with the property "pi" only, and b, denotes & beam with the property "p,*
only, then it can happen that pbl(d,l) # phid,k) .
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Besides the transmission probabilities pb(fi’fj) . which we shall denote
in all practical cases 'p(fi,fj) » we also need the filtration probabilities

!
it

p(b,f;) = S slr) rlb,f,) ar ; - {2)

vhere e filtration ratio r(b,f;) = Ip, /T, with Ip and I denote the
intensities of the beams bfi and b respectively.

Conecluding, if we have the filtérs in E +then we can find provisory pure
beams and investigate only their properties. If we do not have the filters,
we must have some other devices for the determination of the initial states.
Such devices are the detectors Dp mentioned in the introduction. From all
counters of quanta which we have in E besides the counter g from
Statement 2 we eliminate all those which overlook some quanta independent of
their properties. They can be recognized by the proportional decrease of the
registered intensities of all the beams., We also eliminate 2ll non=-linear
counters. All those remsining are called DP + Now with each beam b we can
assoclate registration probebilities by all the detectors Dp . A.registration

probability p(b,d) 1s defined by the detector d as
p(b,d) = 8 s{r) r(v,a) ar , (3)

where registration ratics r(b,d) = Id/Ib with I, and I, denoting the
intensities of the beam b measured by the detectors g and ‘4 , respectively.
(From this moment the detectors will be denoted solely by 4, and the filters
by fi to differentiate between the two kinds of probabilities p(b,fi) and
p(b,d,).)

If the probability p(b,d) = K , we can say that an average quantum of
the beam b has the property "d" (to be registered by the detector d ) with
the probability K . As usual, we must check the character of the observed

probabilities using different intensity reduction procedures.

To visualize what kind of effects can appear in the case discussed above,

we shall consider a simple exemple.

Example. Let us consider four beams of classical objects produced by four
gources, 1.e., the beams of balls in three colours: pink, green and dblue. All
the balls behave in an identical way in all macroscopic experiments. So from
the point of view of & colour-blind observer they are identical. However, the
observer has three additional detectors: g, & and ¢ ; g registers all balls,

d registers all pink and green balls, and ¢ registers all green and blue balls.
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After repeated experiments, the observer notices that each beam b is
~characterized by the two registration probebilities p(b, d) and pib,c) ,
defined a9 beforgf ‘The observer checks the stqbility of the values of

p(b,e) and p(b,d) by stopping some of the balls before they arrive st the
detectors. Of course, héldiécoyérs that thé_bégms Eéhavé liké'classical
mixtures, but being unable to select the pﬁre beams‘héjcqn only répresent

the beams by some points in two-diménsional’féctor spaee.k If all possible
‘mixtures of the initial beame can be experimentally realized, then all these
mixtures can be represented by & convex get on & plane. The specific Bhape of
this set depends on the initisl beams, One can say that éach set is a convex
envelope of the set of the points oorresponding ‘to the initial beams. Let us
visualize this in a aimple plcture (gee Fig.l)

The triangle ABC 1in Fig.l is a clessical symplectic cone-ls) ; the observer

notices that the beams A, B, C are pure snd the beam D is & mixture of them.

Every ball of A has a feature "d" and does not have a feature "e®

Every ball of B heas both features "d" and "Q" .
Every ball of C has & feature "c" and does not have a feature "a" .

The quadrangle C, D', A', B' is another set of the initisl beams; now only
the beam C is pure and the other beams are mixed, but since we cannot separate
pure beams we can investigate the behaviour of all C, D', A', B' beams in the

transmission stage.,

The possibllity of representing all the states by all transition
probabilities was pointed out (in & different context) by Heag and Kastler T),
They'also stressed that we know the transition probabilities only approximately,
due to the experimental errors and limited precision of the instruments.
However, the beams _A'._B'. c, D' are represented by well-geparated polnts
in the two—dimensidnalkvector space, SO We are not afraid of amblguities,

If, in some other experimental situation, we obtained the same set
A' ,B' , c,D' and the beams showed qusntum character, then we would assume
that the beams &' s B' sy C D' are pure but we would represent them in the

t

same wvay.
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Now we want to investigate the behaviour of our beams in the trens-

mission stage.

Definition 4., A classicael transmitter T is & device which changes the beam

b in a unique way into a beam b, and which is not a filter. A quantum trans-

T
mitter T 1is & device which changes the pure beam b into the beams bB with

fixed transition probabilities pT(b,bS) and which is not a filter.

Coming back to our example {classical case); we take as s transmitter
T the device which changes the colours of the balls in a well-prescribed way.
For example, it can change the beam b consisting of green and pink balls
inte the beam bT consisting of balls in one or.two other colours.‘ The
classical transmitter of this type has & characteristic feature of repeatability:
in the chains b, bT, bTT’ *++ c¢ycles must appear. The experimental values of
the registration ratios r(bT,c) and r(bT,d) form sharp one-peaked probability
digtributions s(r) , enabling the easy calculation of the registration
probabilities p(bT,c) and p(bT,d).

If we have a quantum transmitter T' and a quantum beam b , there is
no reason for the above-mentioned repeatability. Also, if the transmitter T'
transforms the beam b into a set of well-separated heams bs with the
transition probabilities pT(b,bs) » then the observed experimental values of
the registration ratios r(bTr,c) and r(bT,,d) (at least one of them) should
form many-pesked probability distributions s(r) with sharp peak values around
r(bT,,c) = p(bs,c) and r(bT,,d) = p(bs,d) , respectively. Therefore, analysing
the distributions s(r) , one can (in principle in this case) determine the
besms b, and the transition probabilities PT(b’bs) uniquely (at least if all
pT(b,bS) are different).

Wanting to represent mathematically the transmitters T and T' , we
eagily find that T c¢an be represented by a matrix whose range of the domain
A'B'CD' must be a convex subset of the square OABC. The beam bT can be
represented by a vector BE = (p(bT,é) R p(bT,d)). The registration probabilities
can be obtained as scalar products with the vectors gi = (1,0) and Eé = (0,1),
respectively. In the quantum case, to each beam one can only assoclate a
probability measure on the square OABC . Then T' transform a measures Uy

(which are nearly 1 on the vectors ¥ and go quickly to zero outside) into

a measure ubT = > PT(b’bs)ubs
s

Remark 1, However, it can happen that the distributions s(r) cannot be
interpreted in a unique wey by means of the transition probabilities pT(b,bs) .

It can even turn out that they can be interpreted in infinitely many ways. This
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leads us to a serious revision of the definitions of pure beams and transmitters.
As we know only the_probgbility.distributions s(r) characterizé.thé ensemble
ﬁ&, completely, the values of the registration probabilitiés _p(bT,;ﬁ) end
P(bT,,d) ‘can characterize the ensemble %&, well only if the distibutions

s(r} are sharp, symmetric and one-pesked dlstributions. In such a case, having
a two number classifigation of thé énsémblé 3& s wé can ascribe the same numbers
(with the experimental errors) to all member beams bT' € S&. y and even to the
average quanta from each beam bg, . If the probability distributions s(r)
have a reach structure, then they only characterize the ensemb%f bT' “adequately
and we can say only about well-defined states of the ensemble bT . This
consideration leads us to the following definitions.

Definition 5. A state of the ensemble ‘E- can be completely characterized only
by the probebility distributione s(r) of the filtration or the registration
ratios for ell beams b ¢ g . '

Definition 6. A pure engemble b of pure beams b 18 characterized by such

probability distributions s{r) which remain approximately unchanged:
i) for the new ensembles %1 obtained from the ensemble b - by
the application of the 1-th intensity reduction procedure
on each beam b € g H

ii) for all rich sub-ensembles of ‘E chosen in a random way.

Definition 7. A transmitter T 1s & device which transforms each ensemble

P into & well-defined ensemble ‘ET and which is not a filter.

Now we come to the general conclusions of this long section.

Conclusions.,

We have considered the experimental set-ups with and without provisory
maximal filters (p.m. filters). We also divide into two parts the discussion

of mathematical schemes useful for the representation of the results.

A, ~ We have n-p.m. filters fl’:"’fn , which we use not only for the
preparation of p.p. beams but also to analyse the final beams obtained in the

transmission stage. Now we can have two cases:

a) In the detection stage we always observe the p.p. beams, but starting
from the same p.p. beam b and using the same transmitter T we observe different
outgoing pure beams bi . However, they appear with more or less fixed transition
probabilities pT(b,bi) . In such a situation, we can represent the beams b;
end 'bT by the vectofs in the n-dimensional euclidean space El . The initial
beams bi can be represented by the basic versors 3& and the beams bT by

the vector 3& in this space. The probabilities of finding the beams b; as
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the outgoing beam b can he uritten in a scalar product form

pT(b b,) = bT 4 + Fach transmitter T can be represented hy a 1inear
operator acting in this space.

b) The beam b never turns out to he one of the P.p. beams 'bi . Wé
obtain only probability dlstributions s(r) of the filtration ratios
r(bT,fi) s Which in general have rich peak structure. As we noted in the
example, it is posgiblg to déscribe thg ensémble ‘;E of the beams bT by

- probability measures Hqp on the n-dimensional vector space E2 . The vectors

-’

b in E2 s corresponding to beams b » have as their components the filtration

probabilities p(b,fd) - The measures L, , corresponding to the initisl p.p.
beams b, , are neerly equal to 1 on the corresponding vectors ﬁ; and go
quickly to 0 outside. The measures Mpp 8re only characterized by all s(r) .
Only in some cases of the s(r) we can extract the transition probabilities
pT(b,bB) in a more or less unique way. The beams ‘bB are different from

the initial beams bi . The transition probabilities satisfy a condition

Z Pp(byby) = 1, contrary to the fact thst for any chosen beam by, from
the ensemble bT in general 2% r(bpsf;) #1 . In other cases we can fit
our experimental data on s(r) with the different pT(b,bs) in many different
ways. To have uniqueness we have to accept that the ensemble bT is only
characterized by all s(r) , as was already stated in Remark 1 and in
Definition 5. In such an approsch there is no place for the notion of
transition probabilities.

B. The cese when we heve only n-detectors dl,---,dn is mathematically
equivalent to the case A.b). We have only to replace the filtration ratios
and probabilities by the registration ratios and probesbilities, respectively.

In all cases we should check the purity of the ensemble ﬁ; according
to Definition 6. Sometimes we can interpret the values of pT(b’ba) found,
due to the mixed charsacter of the initial ensemble b with respect to the
property analysed by the transmitted T . Such a possibility explains the
term "provisory" occurring in the definitions of the maximel filter and the
pure beam. A contrary situation is also possible. Mixed ensembles with
respect to some properties can behave like pure ones with reapect to the

properties anslysed by the transmitter T .

The careful differentiation between filtration or registration ratios
and the transition probebllitiesz leads ug to the conclusion that, in experiments
of the type considered, if we succeed with the extraction of the trensition
probabilities from the érpérimental data, then in all cases A and B we can
represent the béams by unit véctors in the n-dimensional Hilbert space for

A.b) and B and the transition probabilities by the appropriate scalar products
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betweeh them., It stems from thé fact thaf for each ensemble ﬁ;
finite number of beams b, and the transition probabilities p(bT,bB) , which

we have a

can be embedded in the Hilbert space. However, the following new features

appear:

1) The set of phyeically meaningful vectors is restricted to those
corresponding to the by (initial beams), to all beams biTi .
biTiT vee {where ‘Ti are all available transmitters), and also
to all beams bs extracted in the analysis of the data. If we have
- > . 5 -
two vectors le and bT we do not know whether b

+ b
2 T Ta
corresponds to a physically realizable beam st .

ii) 'The physical interpretations have only some scalar products of the
vectors of the type K?Tl?s) 12 = pplbyb,) , where b are found
in the analysis of all s(r) deseribing '3E - and 'g; are vectors
corresponding to them, All the '%B found for all transmission

processes form an orthonormal basis of the Hilbert'space considered.

If we accept the philosophy of the Definitions 5-7, then the Hilvert space
degeription loses its sense, since the transition probabilities Pf(b’bs) do

not appear.

However, in all the cases discussed above, having a lot of experimental
results we can try to find a guasi-theory enabling us to interpret the data

and to predict.new results.

Bo we find that the usual gquantum mechanical description can turn out
to be not too poor, as was suggested in Refs.1ll4 and 15, but too rich or not

very appropriate.

The experimental scheme discussed so far is structurally similar to that
used for.the investigation of the scattering phenomena of elementary particles.
Instead of simple filters and detectors we use many complicated instruments
which, based on our previous knowledge, ensble us to prepare and classify the
initiél and finél beams. The different kinds of chambers and emulsion layers
enable us to observe one-particle beama; but, in fact, we observe only
statistical regularities characterizing ensembles of such beams., The scattering
process can be understood as speclfic transmission processes in two ways. One
interpretation is that one-particle beams, for exémple proton beams bp , are
transmitted by the transmitters = protons Tp leading to a many~particle beam

; ) i
(bp)T = bf . Another interpretatipn is that initial beams bp—p consisting

_ P-p
of the two free protons are transmitted by the transmitters = strong p-p inter-

action into the final beams b; p We still have an additional interpretational
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freedom;by & transformed ensemble bg_p we can understand a set of all final
free particle beams bf
. , p-p.

bp-p , whigh are visualized by the interaction points in the emulsion layers or

the photo—pigtures from the different chambers. In this second case, the final

or a set of strongly interacting proton-proton beams

free particle beanms bg—p cah be interpreted as arising in some kind of

measurement process performed on the beams b; p°

One could argue_that thé formalism discussed in this paper 1s not very
applicable, since in elementary—particlé physies wé deal with the continuous
variables characterizing thé beams. However, in all preliminary experimental
date we characterize our initisl and final beams by intervals of, in fact,
continuous variables., All these analogies, and the fact that e set of the
different scattering processes which ¢an be observed between elementary particles
is very limited, show the need for careful investigation of whether the quantum
mechanical unitary S-matrix language is not too rich for'the description of the
observed phenomena., We shall investigate this problem in detail in the sub-

sequent paper.

Now we give for completeness a definition of instruments, leaving the

analysis of the practically-realized instruments to the subsequent paper.

Definition 8., An instrument I is a device allowing the description of each

beam b 1in terms of earlier-known categories (parameters). The ascription of
these pérameters involves the assﬁmption of the applicability of some earlier-
known thecries. The instrument, by its interaction with the beam b , changes
it into a beam bI + The repeated applicatién of the same instruments usually
leads to slightly different values of parameters asoribed to our beams, The
measurement made by the instrument for all beama b characterizes the

ensemble 3'. An ideal instrument is such that we can assume that bI =D .,

Generally, one could consider the instrument which can change the ensemble
‘; into the different ensemble gI *‘;,. Anslysing the results of many measure-‘
ments, one could find the characteristic features of the instruments used. In
spite of the fact that ﬁ; is different from g—, the values of parameters
ascribed to b in the measurements can be used in some way for the lsbelling
of the initiael ensembles b or 6}. However, in practice we try to use the
ideal instruments. A good exemple of such instruments are the filters fi

as applied on the beams bfi y different kinds of chambers and so on.

At the end of this section we should like to point out that, in spite of
the fact that we have been talking sbout ensembles of quanta beams, our results
can be generalized for experiments with ensembles of identicel physical systems.

Instead of filters and detectors, we should have other more complicated

ingtruments to determine the states of the initial and final ensembles.
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We ehould also like to remark that the particle character of our beams,
implying meaeurement of the bean intensities by counting the quante, is not
necessary, When discussing stetes of ensembles b , We can meaeure the
intensities‘andlthe approprlate ratios for some non-particle beams. The particle
character of the beams was essential in the'disceesion of the pure beams aﬁd
of the non-classical cheracter'of the‘prob&bilities.

Now we pass to the polemic with some views presented in papers on
axiomatic quantum mechanics,

III. POLEMIC WITH AXIOMATIC QUANTUM MECHANICS

The great success of quantum mechanics in deecribing many atomic and sub-
atomic phenomens, and the fact that classicel physics is a limiting case of
quantum physics, encouraged people to think that a generel,framQWbrk to describe
ell physical phenomens had been discovered.

To prove this statement one should find such a set of the natural
agssumptions on 8, B, F, D, T and I characterizing & physical process of a
measurement Iin general, which would imply uniquely the usual guantum description.

The more general attitude wes asccepted in the papers of Birkhoff aend
1) 13) 8),9) s Piron 9) 16), Finkelstein 4, 5)

» and others, where the so-called quantum logic of the propoeitions
12)
and

von Neumann y Jauch

6)

concerning a physical system was studled. 1In the papers of Ludwig

s Mackey

Gunson

Déhn 3) the state-effect structures were investigated; in the papers of

Pool 17),18) state-event structures.

All these studies aimed to find such a set of natural axioms which would
imply uniquely the use of the complex Hilbert space language or the algebraic
Haag-KhstlerT)
probabllities. The required set of assumptions was found in many axiomatic

language for the description of the states and transition .

approaches; however, the naturality of some of the accepted assumptions is
questionable. 'They were all chosen by analogy to the experiments performed
on the optical bench with the use of colour filters, Nicol prisms, and other
devices. The states of the differently polarized light can be repreeented by
all rays in the complex two-dimensional Hilbert spacej{(z,C7 and each state
can be realized in the laboratory. To each linearly-polarized beam there
corresponds in a one-to-one way an appropriate filter -~ the Nicol priam or
polarization filter « which is trensparent to 1t. 8o one has, in principle,
an uncountable smount of filters in the laboratory, since ;n that case nearly
each rotation performed on the Nicol prism enables its interpretation as a

different filter.
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This special case strongly supports the commonly accepted philosophy in
quantum mechanics, according to which each pure beam state is prepared by
an appropriate maximel filter. Also the flltration probabilities of the pure
beams 25 in that case are equal to the transmission probabilities (1)
between the corresponding filters and can be expressed by the scalar products
of the unit vectors in JK (2 ) representing those filters. Se in fact,
instead of talking aboutlthe states, one can talk sbout the filters asnd the

transmission probabilities between them,

This observation gave Mielnik the force to attack the usual quantum logie

1kh)

with the geometry implied by the transmission prcbabilities is the main

approach, His mein starting point wes the assumption that the get of filters

characteristic of all quantum  phenomena (however, Mielnik, instead

of saying "transmission", says "transition'). Therefore, to investigate the
problem of the universality of the orthodox Hilbert space representation, one
must gtudy whether the above-mentioned geometry allows the representation of
the filters by the unit vectors and the transmission probabilities as scalar
products., In his two clear and provocative papers 1&),15), he realizes his
programme and comes to the following conclusions lrj): .

" +++ Tt now becomes cleasr that the orthodox classical and orthodox quantum

systems do not represent a unique slternative for guantum theories, but they are
only particularly degenerate members of a vast family of "quantum worlds"
n

which are mathematically possible ++-

" +++ We thus conclude that the concepts reviewed in this article represent

the missing element neécessary to convert non-linear wave mechanics into "mechanics

of non-linear quanta. -+« "

lh)’l5), in our opinion

Though there is no mathematical fault in the papers
the above statements are completely unjustified. A simple misunderstanding is
due to the interpretation of the transmission probabilities as the transition
probabilities. These latter are a basic notion measured_in all our experiments
and depending on.the dynamics of the phenomena. The transition probabilities
can be directly connected with the cross-section, branching-ratios, life-times
of the excited 1evels, and so on. The value of quantum mechanics consists
in its ability to predict those probabilities in the agreement with the
experimental data. On the other hand, the transmission probabllities are
the static properties of the filters and the beams and can_only be used (if
the filters exist) to characterize the initial and final beams. A careful
analysis of the general experimental set-ups made in the previous section

sllowed a clean differentlation between all kinds of the probabilities (1,2,3)
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and the definition 6. divorced the concept of a pure state with a concépt
of a maximal filter. Bo the Mielhik statement has torhe'bhanged into the
following atatement::

There can be_mgny gets of fi;ters whoee transmission probabilities do
not allow the representation of tbem by the unit vectors in the Hilbert space
with the transmission probabilities being equal to the appropriate sealar

products.

Besides this main criticism, we have other critical remarks concerning

15). In this paper the maximal tfansmission systems sre considered,

the paper
Those systems have so rich s class of tranamitters that each physical state
can be transformed in any other by means of the'appropriate transmitter.

They elso have, in génergl. an uncouﬁtably rich set of maximel filters. To
each pure beam there correspond two filters; one is completely transparent to
the beam, the second is completely non-tfansparent. In our copinion, dealing
with such rich classes of filters is rather unrealistic, Therefore, we cannot
accept the second-cited conclusion concerning the quantization of non-linear

15)

theories. The procedure proposed in the paper can be devoid of any physical

mesning.

To 1llustrate our arguments we shall discuss a nice example of the drop
. 1b),

of non~Hilbertian quantum liquid from the paper
" ... Someone looked st & small spherical glass bubble: 1inside there
was a drop of liquid. The drop occupled exactly half of the bubble in the
shape of a hemi-sphere. He was able to introduce inside a thin, flat
partition dividing the interior of the bubble into two equal volumes. He
tried to do this so that the drop would become split. However, the drop
exhibited a quantum behaviour: instead of being divided into two parts, the
drop Jumpéd-and occupied the gpace on only one side of the partition. He
repested the attempt, obtaining s gimilar result. He began to observe this
phenomenon and discovered that each time the partition is introduced the drop
chooses a certain side with a definite probability. This probabllity depends
upon the angle between the partition and the initial surface of the drop. If
the drop occupied a hemisphere s and the partition forces it to choose
between the two hemispheres r and r' , the probabilities of transition
into r and r' are proportional to volumes of égr and sfir' . He was
struck by the analogy between positions of the drop and qﬁantum states and
between the partition,and the macroscopic messuring apparatus. He wanted to
formulate the quantum theory of this phenomenoﬂ, but he realized that he could
not use Hilbert spacés bécausé the spate of states of the drop was not Hi}bertian ‘
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We disagree with.that conclusion and we analyse the behaviour of the
observer. To meke some predictions hefcopsiders an ensemble ‘gl of the above-
menticned bubbles b . _Béforé starting tO'dividé the liquid drbp hé fikes
the posiﬁions of all the bubblés.to maké thé sﬁffaces of all the drops

i labelled
by the angles 0y between partitions and the surface of the drops. After

horizontal. He chooses a well-separated set of N partitions t

many partitions have been made, he observes a 2N possible positions of the
drop after partitions; Repeating the éxperiments with fixed partition t of
the ensemble b he finds out the probabilistic béhaviour of the drops with
some fixed transition probabilities to the final states. Before accepting

& usual quantum interpretation of the probabilities he investigates the pufity
of the ensemble ﬁ'.as described in the definition 6. If the ensemble b
turns out to be pure, he accepts the following interpretation. The partition
t is some kind of interaction exerted on the drops so the partition % 1is
gsome kind of quantum transmitter transforming the ensemble b into pure
ensembles g; and ﬁ; with fixed transition probabilities, Pt(b’bl) and
‘pt(b,be) . Of course, those probabilities for all the partitions t; we cen
represent as a scalar products in 2N dimensional real Hilbert space of the
vectors -g%i corresponding to the bti with appropriste versors 1%.'5.
Naturally, the scalar products 'g£1-3%2 have no physical meaning. Therefore,
the Hilbert space deseription of this phenomenon is in some sense toc rich

and not too poor, as was claimed in Ref.1k.

Returning to the discussion of exiomatic quantum mechanics, we state that
in our opinibn the problem of Birkhoff and von Neumann, although skillfully
solved in the different axiomatization schemes, was stated in too general a waY .
In our opinion, it is not very economic to talk about all possible propositions
concerning the physical systems in genersl. In all practical case, we at first
perform the experiments and the analysis of the results gives us a set of
physically meaningful propositions about the system. This set depends on the
particular experimental set-up and its richness depends on-tﬁe richness of the
observed phenoména. The careful analysis of the particular experimental set-ups
can lead us to the discovery of new, more economicel and fruitful descriptions,
though the o0ld language of Hilbert spaces could be used. Being tco general, we
cannot get insight into such problems and we cannot hope to arrive at the

conclusive new statements to be verified in the experiments,

6) 17)

Finally, we should like to question some axioms of Gunson and Pool .
Gunson considers a set of propositions P and s set of states S5 . BStates are
the probability measures on the propositions, teking the real values from O
to 1 . The exiom A.k is: "For evéry a, béeP wehave a £ b if and only if
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f(a) & £(b) for all f € S . For the propositions, the relation a.é b
in equivalent to. the'usﬁal'implicﬁtion relation é impliés' b-‘. Gunson
elso uses the following definition of the orthogenality a lb ¢-) a g <1
where b' is the logieal negation_of the proposition b .

Counter exdmple. Let us considér the following altuation. We have only two
‘pure ensembles £ and gv and two detéetors d and 2 . The only things we
can measure are the registration 'pro‘ba.'bilitiéa (3) by those detectors. With
each detector we can associa.te two propositions. For eiample. the proposition
g _ "the physical system from the ensemble is registered by the detector 4 ",
and the proposition "d'" - "the phyaioa.l system from the ensemble is not
registered by the detector 'd ", As we see for f e f we have plf,d) = £{"d")
in Gunson's notation. ‘

Now let us sesume that we observe the following values of p(f,d) and
p(f,l) : f(l‘vdn) = lfll . g("ﬂ") = 1/3 . f(n!’n)- = 1/8 , g("E") = 1/7 .
£("a'") = 3/4 , g("a'") =2/3, f("ff'") = 7/8 , g("L'") = 6/7 .

As we see, the propostions  "d" and "A" satisfy the axiom A.k so
Ma" £ ™" yhich is equivalent to Ma" implies "2" | but such implication
is physically completely unjustified. Now, using the definition of the
‘orthogonality, we find thet d & 4 ; therefore, 4 1 d,

Pool in his papers accepis the following definitions and axioms:

Def‘inition I.l. An event-state structure is a triple (E 5,P):

i) B is a set called the logic of th_e even-state structure and an

element of E 1is called an event}
1i) 8 is & set and an element of S is called a state; '

iii) P 18 & function P : Ex 8- {0,1] called the probability function
and if p¢ E and o €8S , then P(p,0) 1is called the probability

of the occcurrence of the event p in the state o

iv) if p € E , then the subsets Sl(P) and So(p) of 8 are defined
by

foe g : P(p,a) = 1}
{oe 8 : P(p,a) = 0} .,

5, (p)
So(P)

Axiom I.3. If p, q € E and S5,(p) C Sl(q) s then Sy(q) C 8y(p) -

Axiom I.b. If p ¢ E , then there exists an event p' ¢ E such that
= . 3 1 = :
g (p') = 84(p) end &4(p") s, (p) .
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In our opinion, these axioms are not general enough., For exemple, if. a¢ are
the states of ensembles consisting of beama, end p are the events of the
type (transmission through the filter P ), then the P(p.a) cen be the
transmidsion probabilities., In thie case the properties end the richness of
the sets S (p) and g (p) depend on the beams and the filters in the
particular experimentel set—up and it is easy to give an example for which
the Axioms I.3 and 1.h are not ee&isfied.

The above two examples support our thesis that it is extremely difficult,
if not impossible, to axiomatize all possible experimental set-ups in the

naturel way.

Now we pass to the last seetion, vhere we formulate a programme of
future investigations which could enable the answer of the title question of

our paper.

IV. A PROGRAMME OF INVESTIGATIONS )

We'eould not enswer the title question of this paper, since we have been
analysing some hypothetical general experimental set-ups. To answer the
question whether the Hilbert space language is too rich to describe some
physical phenomena, we should csarefully analyse sll real physical set-ups
and observed phenomene, starting from solid-state physics and ending with
high-energy elementary-particle physices. Such analysis should be done by
physicists who really work in the specific branch of physics and who know
a1l the subtleties of the experimental set-ups and of the theoretical. analysis
used to explain the data (to obtain the curves ). |

It ig clear that it 1s quite difficult to find out that the langusge
used is too rich; moreover, with the help of computers & beautlful asgreement
with the data can be obtained in most cases. However, one feature of the too
rich language is the possibllity of obtaining the ssme predictions using quite
different models, which is equivalent to the lack of the unique theoretical

explanation. The observation of such a situation can be & first hint for
| future investigations. In our opinion, one more or less sure method is to
find scuh rigorously derived experimental predictions of a general nature,
which can be verified in experiment, and to test them with full objectivity.
In elementary-particle physics it can be the uniferity of the S matrix. Tne
other method is to try to invent more economic langusge. In the discussion
of the general experimental set-up, such possibilities were indiecated.
Especially interesting was that of Remark 1 where the notion of the transition |

probability disappeara.
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The other interesting problem is an operational staxus of quantum
mechanics in its applicationa to. many new phenomena. The operational status
of quantum mechanics was discuased on the basis of experiments with polarized

1light and Stern-Gerlach' e;periments{_ ngntum mechanics as applied to high-

energy elementary-particle scattering was not discussed in that context .

Anotherfimportant problem is to invéstigate to what extent the good
results which we obtaiﬁ dépend on @11 oﬁr particular assumptions and on the
basic assumptions of the theory we ugsed. "‘Many models in elementary-particle
physics are believed to be thecked by the agreement of their predictions with
experiment and are supposed to have a deeper physical meaning (not only to be
& convenient parametrizétion of the data) However, sometimes a careful
analysis of the results shows that they are not deduced from the assumptions
and they can only be rigorously derived from another set of assumptions which
can have nothing in common with the physical ideas involved in the initiel
assumptions;'.Tb glve an_example; s careful snalysis performed in the papers 10),11)
showed that the additivity assumption in the quark model applied with success
'for'highéénergy elementary-particle scattering can have nothing to do with
the physical plecture of s static quark model where the quarks are-treated like
hypothetical congtituents of the elementary particles.

The programme which we have presented can be swmarized as follows. Let
us be more critical of the models we propose, of the conclusions we obtain, and

let us check the operational status of the language we use to deal with data.

The investigation in this direction will be continued in the subsequent
paper. ' ' '
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