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Bertrand’s paradox from the theory of probability is recalled and its relevance to the impossibility of proving Bell’s inequalities

for realistic spin polarization experiments is pointed out.

The results of spin polarization correlation exper-
iments (SPCE) together with Bell’s inequalities are
sometimes considered as a proof that any theory with
supplementary parameters (TSP) able to reproduce
the quantum mechanical predictions (QMP) has to
violate einsteinian causality [1,2].

On the other hand local deterministic spin models
reproducing QMP have been constructed [3,4] and
random experiments with macroscopic bodies vio-
lating the Bell inequalities have been invented and
performed [5].

There is a lot of confusion [1] concerning these
contradictory results; this is why we want to reex-
amine the Bell inequalities. The main hypothesis (H)
needed to prove Bell-type inequalities [6-9] is the
assumption that the probabilities estimated in var-
ious SPCE can be calulated from one sample space
(probability space) by conditionalization. The
hypothesis H is not valid in the refs. [3-5], thus the
Bell inequalities do not apply. Moreover we are going
to show that H implies serious constraints on the way
in which random experiments should be performed,
which turned out to be not satisfied in SPCE.

Before elaborating this point we want to recall the
instructive paradox contemplated for the first time
by Bertrand [10].

Let us consider two concentrical circles on a plane
with radii R and R/2, respectively. If we ask the ques-
tion: “What is the probability P that a chord of the
bigger circle chosen at random cuts the smaller one
at least at one point? ”, we may find, using simple
geometrical arguments, three evident contradictory
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values of P. Namely, if we divide the ensemble of
chords into the subensembles of parallel chords, we
find P=1/2; if we consider the subensembles of
chords having the same beginning, we find P=1/3
and if we look for the midpoints of the chords lying
in the small circle, we find P=1/4. The explication
of these seemingly paradoxical results is well known
[11]. The different values of P correspond to the dif-
ferent random experiments which may be used to find
the answer to the Bertrand question. Thus the prob-
abilities have only a precise meaning if the random
experiments used for their estimation are specified.

Let us show now that the Bell inequalities cannot
be proven without additional assumptions if we
associate with particles in SPCE the functions acting
on the orientation vectors of polarizers and if we use
consequently the frequency definition of all meas-
ured probabilities and expectation values [12].

Let us assume that we have a beam of pairs of spin-
1/2 particles or photons moving in opposite direc-
tions toward two ideal spin measuring devices Y and
X characterized by the orientation vectors y and x,
respectively. To make our argument as clear as pos-
sible, we deal here with 100% efficient devices, per-
fect correlation and angular resolution (a
generalization to the real experimental conditions can
be done without any problem). We associate with
each particle a corresponding function s, s:
S@ {1, 1}, where S® is the set of unit orienta-
tion vectors, and with each pair of particles corre-
sponding functions s and s’ = —s randomly chosen
from a set F (a set of functions on S‘?’ satisfying some
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supplementary conditions to be specified later).

From experimental data we can estimate the
expectation values of E(y, x) closely related with the
spin polarization correlation function. The esti-
mated values of E(y, x) are obtained by averaging
the results of the different runs from the correspond-
ing experiments. Let us assume, for simplicity, that
in each experiment we analyze M runs of the same
length N. The expectation value E(y, x) =limy 4/
Eyn(y, x), where

1 M
Eyvn(y, x) = A_lj; riv(¥, X)
1 N
riv(y, X)=— N Y S(¥)sy(x) (1)
=1

where s,e F is a function associated with the first
particle of the /th pair of particles from the jth run.
The experiment is characterized by a couple of vec-
tors (y, x).

Let us observed that using Bell’s method [6,8] we
may prove the following relations for any value of
j=1, ., M,

N N
— 4= X 5i(0)sy(x) = X si(0)sy(x) (2)
N
—A,:I;]s,,(y)s,,(x)[ L—s;;(x)s;(x)] , (3)
1 N
4/NI 1= 5 3 5(0)sy(x) - (4)
=1

If we analyze the formulae (2)-(4) we see that only
the first term in —A4;/N is a quantity obtained from
the data of the experiment (y, x). Whether one may
relate the other terms in (4) with the data of real
experiments remains an open question. In fact, the
only thing we know is that s, are randomly chosen
from the set F, thus in general s;,# 5, if [# m or j#k,
where j and k denote different runs in the experiment
(v, x) and / and m different elements of the jth and
kth run, respectively. The same argument is valid, if
we compare the results from different experiments.

Let us examine now what additional assumptions
are needed to enable the proof of the Bell inequality
from the formulae (1)-(4).

(1) Let us suppose that F contains only K different
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spin functions and that in each run we are sampling,
with replacement, the functions s, from F. There are
only KV different sets containing N pairs of func-
tions, thus a probability of finding a particular set in
a given run is equal to K~%, It is reasonable to assume
that, if we make a sum of all the runs, the frequencies
of the different sets will be similar in all the experi-
ments. If we add all the inequalities (4) dividing by
M and letting M tend to infinity we obtain the first
Bell inequality

|E(y, x)—E(y,x')| <1+ E(x, x') . (5)

(2) If Fis infinite, we could have obtained the for-
mula (5) from (1)-(4) if the experiments had been
performed in a way ensuring the validity of the pro-
cedure described in point (1). For example if in each
experiment we have the same final collection of the
sets of N pairs of functions we obtain the inequality
(5) directly for the empirical averages E/,

| Epin(Y, X) —Epn(3, X') | S T+ Epn(X, X7) . (6)

It might seem plausible to accept that point (2) is
valid for any F and for the experiments discussed
above, but this is not so. Let us make the following
remarks:

(a) If the set F contains uncountably many ele-
ments (F has the power of the continuum) the prob-
ability of drawing from F at random a particular spin
function, if one is sampling with or without replace-
ment any number of times, is equal to zero.

(b) A random experiment (y, x) does not consist
in comparing different spin funtions, but it is
designed to estimate four conditional probabilities
p(y*,xT),p(y~,x"),p(y*,x7) and p(y~, x7),
where p(y ", x*) is the probability for the second
particle of each pair of particles to be transmitted by
the device X if the first is transmitted by the device
Y. According to the model discussed above, p(y ™,
x*) is equal to the probability that s(x)=+1/2, if
spin functions s are drawn from F_(p)
(F_(y)={seF, s(y)=—1/2}). A sample space S, for
the experiment (y, x) contains only four points and
the probabilities p(y*, x*) can be estimated from
the observed relative frequencies. A priori S, and
S, « are unrelated for y#y’ or x# x’ because the ran-
dom experiments (y, x) and (', x’) are different
(similarly to the Bertrand situation).

(c) In general, if we deal with different indepen-
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dent random experiments, we cannot and we do not
use a unique sample space to describe them all. Oth-
erwise we would violate Kolmogorov’s axioms of the
probability calculus. On the contrary we use one
sample space S to describe L different random exper-
iments in which probability distributions of L ran-
dom variables R,, i=1, ..., L, are studied, if these
experiments can be replaced by one random experi-
ment designed to study the probability distribution
of one L-dimensional random variable R= (R, R,,
.., Rr). From the data of this experiment informa-
tion concerning any particular variable R; can be
obtained. A model of this type was used to prove the
Bell inequalities.In fact, if one considers a set of m
macroscopically distinguishable orientation vectors
n; of the spin measuring devices Y, one can perform
m? experiments (y=n,, x=n;). Now if with each
event one associates the supplementary parameters
A=(4,, 4,) and with each Y, a bivalued function A4,
(A4,(4)==*1), one can represent A by a set of 2m
integers A= (4,(4,), A4,(4); Ax(4)), Ax(42)s
A,n(A), A,,(4,)). The overall sample space S is of
dimension 2> and one may say that the state of each
particle is completely described by the simultane-
ously measurable values of the spin projections #;,
i=1, ..., m. The various SPCE cannot be replaced by
one random experiment of the type discussed above
and in our opinion this is the reason why the Bell
inequalities do not hold. The various probabilities
appearing in their proofs are counterfactual and have
nothing to do with the measured ones.

(d) Ifin the formula (1) one replaces s, by 25, and
by Fy (where s, are Pitovsky spin funtions [3] and
F, their set in the P-model), one can reproduce all
QMP [3,12] without introducing faster-than-light
influences.

To conclude, the Bertrand statement, that talking
about probabilities we should always indicate the
random experiment needed to estimate their values,
is very important in epistemological disussions on the
foundations of quantum theory.

Note added

After this paper had been completed our attention
was drawn to two papers by de Baere [13] in which
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the author strongly claimed that the violation of the
Bell inequalities is due to the non-reproducibility of
a set of hidden variables in subsequent experiments.
He was, however, unable to prove that if we repeat
the experiment to measure the same spin correla-
tions, we obtain consistent results nor that the agree-
ment with the quantum mechanical predictions can
be achieved. The use of the uncountable set of spin
functions associated with particles (suggested for the
first time by Pitovsky) together with the operational
definition of all the probabilities gave the solution to
these problems.
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