
Trace Specifications of Non-Deterministic Multi-Object

Modules

Michal Iglewski (e-mail: iglewski@uqah.uquebec.ca)

Département d’informatique, Université du Québec à Hull, Hull, Québec, Canada J8X 3X7

Marcin Kubica (e-mail: kubica@mimuw.edu.pl)
Jan Madey (e-mail: madey@mimuw.edu.pl)

Institute of Informatics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland

ABSTRACT

The Trace Assertion Method (in short: TAM) is a formal method for abstract specifica-

tion of interfaces of software modules being designed according to the “information

hiding” principle. A trace specification is a “black-box” specification, i.e., it describes

only those features of a module that are externally observable. The method was intro-

duced by W. Bartusek and D.L. Parnas some 15 years ago and since then has under-

gone many modifications. In recent years there has been an increased interest in TAM.

Software tools supporting practical usage of TAM for software engineering projects

are under development, the method is being tested on different applications, its foun-

dations are being studied.

Recent experiments with TAM have showed the need for further study in the case of

non-deterministic multi-object modules. In this paper we investigate the expressive-

ness of the method for such modules. We present a formal model of a module and its

TAM specification, show that the method requires some extensions and propose solu-

tions. Our considerations are illustrated on TAM but could also be generally applied to

modules with hidden non-determinism.

The full version of our investigations, including all definitions, lemmas, proofs and

examples, is presented in university technical reports.

1 Introduction

The Trace Assertion Method (in short: TAM) is a formal method for abstract spec-

ification of interfaces of software modules being designed according to the “informa-

tion hiding” principle [12]. A module implements one or more objects. A trace

specification is a “black-box” specification, i.e., it describes only those features of an

object that are externally observable and hides details of its internal structure. The

method was first formulated in [1], and since then has undergone many modifications

[3, 4, 7, 9, 11, 14, 15]. In recent years, there has been an increased interest in TAM, es-

pecially within the framework of the “functional approach” [13]. Software tools sup-

porting practical usage of TAM are under development (e.g. [6, 15]), the method is

being tested on different applications (e.g. [2, 9]), and its foundations are being studied

(e.g. [8, 9, 15]).

Let us now justify our decision to study non-deterministic multi-object version of

TAM. Firstly, a given module may be designed in TAM to implement either a single

object or a number of objects. There is a distinct difference in the complexity of TAM

in these two cases. While introducing TAM we often limit our considerations to its sin-

gle-object version, thus omitting certain problems (both syntactic and semantic) which

arise in a more general case. In practical applications, however, a module is usually

understood as an abstract data type, and a single-object module is treated as its special

case, where there can be only one variable of that type. The present paper is a continu-

ation and extension of [8] where TAM restricted to single-object modules was investi-

gated and specifications were modelled as Mealy machines.

Secondly, non-determinism can be understood not only as a possible requirement

(one may like to have a non-deterministic behavior of the program under develop-

ment) but also as a certain philosophy in system design. A higher level of abstraction

should leave as much freedom as possible to a specifier of a lower level which could

be expressed in TAM by allowing non-deterministic modules. We think it is very im-

portant.

The structure of this paper is as follows. In Section 2 we present a formal model

for multi-object modules. In Section 3 trace specifications for such modules are de-

scribed. In Section 4 we show an example of a multi-object module that cannot be

specified in the current version of TAM. A modified simple model of trace specifica-

tions which covers a wider class of non-determinism in multi-object modules is pro-

posed in Section 5. Related changes in TAM and the expressiveness of a proposed

version of TAM are discussed in Section 6. Final conclusions and future plans are

briefly presented in Section 7.

2 A Formal Model for Multi-Object Modules

2.1 Introduction

We assume that time is discrete, linear, with an “initial” instant, and without a “fi-

nal” one. Instants of time are represented by natural numbers.

The notion of an object can be characterized as follows. An object is any entity

which has states, can be affected by events, and satisfies the following properties:

• at every instant of time the object is in one of its states; initially, the object is in the

initial state,

• the object may change its state only as a result of an event; if the event occurs at

the instant , the object is in a new state at the instant .

Objects are grouped in modules: we say that a module implements a number of

homogeneous and independent objects. If a module implements one object it is called

a single-object module. A multi-object module can implement a given (including infi-

nite) number of objects. In this paper we deal with multi-object modules.

Objects implemented by a given module are called domestic, while those imple-

mented by other modules are called foreign. For each module there is a specific set of

events that can affect its domestic objects.

There are two kinds of events that can affect an object:

• access-program invocations (calls of programs exported by the module),

• input variable events (changes of values of the module’s input variables).

t t 1+

We assume that at most one event can occur at a given instant of time and that ob-

jects in the module can be affected only by a finite sequence of events.

In this paper we deal only with the first kind of events. However, we do not lose

the generality of discussion since an input variable event can be expressed in terms of

an access-program invocation. Input variables are described in detail in [2, 3, 14].

For each module there is a finite number of access-programs. Each access-pro-

gram operates on at least one domestic object and possibly on foreign objects. As a re-

sult of an access-program invocation the arguments can change their states, possibly

non-deterministically. For the sake of simplicity, we will treat values returned by func-

tions as arguments which can change their states but with irrelevant initial values. For

each access-program invocation, the next state of each argument depends only on the

previous states of the arguments of this invocation. We assume that all arguments of

access-programs are different objects. In practice, however, one object can be passed

through several arguments of an access-program. This does not cause any loss of gen-

erality because we can model an access-program whose arguments might possibly rep-

resent the same objects by several access-programs whose arguments are always

different objects. For example, an access-program with two domestic arguments,

which can represent the same object, can be modeled by two access programs:

• one with two domestic arguments (representing different objects passed as argu-

ments of), and

• one with only one domestic argument (representing one object passed through

both arguments of).

2.2 Modules

Def. 1 A module is the following tuple: , where:

• is a non-empty set; its elements are called states of domestic objects,

• and it is called the initial state of domestic objects,

• is a non-empty set (possibly infinite); its elements are called names of

domestic objects,

• is a non-empty set; its elements are called states of foreign objects,

• is a non-empty finite set; its elements are called names of access-pro-

grams,

• is a sequence of relations such

that (natural numbers), , and

For each , is a relation specifying changes of states of arguments of the

access-program . means that if an invocation of the access-program

operates on certain domestic objects being in states , and certain foreign objects be-

ing in states , then the states of these objects after the invocation can be , and re-

spectively.

A tuple described in this definition can be treated as an extension of a Mealy ma-

chine  instead of a single state of an automaton we have many states of many ob-

P

P

P

Q q
0

O F I E, , , , ,()
Q

q
0

Q∈
O

F

I

E E
i

()
i I∈

= E
i

Q
k

i F
l
i× Q

k
i F

l
i××⊆

k
i

N∈ 1 k
i

O≤ ≤

q Q
k

i∈ r F
l
i∈, q' Q

k
i∈ r' F

l
i

E
i

q r q' r', , ,()[]∈,∃∀

i I∈ E
i

i E
i

q r q' r', , ,() i

q

r q' r'

jects.

Def. 2 A state of a module is a function . It represents the states of all ob-

jects implemented by this module.

Def. 3 A history of a module is a function (by

we denote the power set of) such that , where

for all . It represents sets of possible states of this module at all instants

of time. At the initial instant, all objects are in the initial state.

Def. 4 An event (i.e., an access-program invocation) is a tuple , where:

• ,

• is a vector of different names of domestic objects; its elements

identify domestic arguments of the event,

• is a vector; its elements represent states of foreign arguments of

the event.

Def. 5 An output of an event is a vector ; its elements represent

new states of foreign arguments of the event.

Def. 6 A step of computation is a pair , where is an event and is an

output of .

A step of computation represents externally (i.e. from outside of the module) ob-

servable aspects of an access-program invocation:

• which access-program is invoked,

• on which domestic objects the access-program operates,

• what are the states of passed foreign arguments, and

• what are the states of foreign arguments after the invocation.

Def. 7 A state of a module is reachable from a state of the module in a step of

computation iff:

We denote it by .

For a given , means that if a module is in a state , an event

takes place and new states of its foreign arguments are equal to , then a new state of

the module can be .

Def. 8 A computation is a finite sequence of steps of computation, ,

where , is an event, and is an output of .

A computation denotes externally observable aspects of a sequence of invocations

of access-programs. For this definition denotes an empty sequence of invoca-

tions.

Def. 9 We say that a history satisfies a computation iff for all

:

s:O Q→

H:N ℘ O Q→() \ ∅{ }→ ℘ X()
X H 0() s{ }= s o() q

0
=

o O∈

e i o r, ,()=

i I∈
o O

k
i∈

r F
l
i∈

i o r, ,() r' F
l
i∈

c e r',()= e r'

e

s' s

c i o r, ,() r',()=

E
i

s o
1

() … s o
k

i 
 , , 

  r s' o
1

() … s' o
k

i 
 , , 

  r', , , 
  ∧

j O \ o
1

… o
k

i

, ,{ } s j() s' j()=[]∈∀

s s'
c
→

c e r',()= s s'
c
→ s e

r'

s'

e
j

r'
j

,()()
j 0=

m

m 1–≥ e
j

i
j

o
j

r
j

, ,()= r'
j

F

l
i
j∈ e

j

m 1–=

H C c
j

()
j 0=

m
=

t N∈

.

A history represents possible states of domestic objects during the computation.

Notice that if there exists a history satisfying a given computation then there is only

one such history.

Def. 10 We say that a computation is feasible if there exists a history satisfying this

computation.

One should recall that the value of a history at a given instant of time is a non-

empty set of possible states of the module. Hence, there can be (and usually are) com-

putations that are not feasible.

The set of feasible computations fully characterizes an externally observable be-

havior of a module. According to the information-hiding principle, we often deal only

with externally observable aspects of a module, i.e., we are not interested in the con-

crete states of domestic objects  we observe only the identity of domestic arguments

and the values of foreign arguments of events. Hence, there can be several modules

that cannot be externally distinguished.

Def. 11 We say that two modules are observationally equivalent iff they have the

same sets of feasible computations.

Sometimes we are interested in reducing a module to a simpler, observationally

equivalent module. A simple reduction can be done by removing states which can nev-

er appear.

Def. 12 The set of reachable states of objects of a module

 is the subset of of all states appearing in histo-

ries satisfying feasible computations:

Notice that always . Non-reachable states of a module do not appear in any his-

tory satisfying any feasible computation. Hence, they are irrelevant to the behavior of

the module.

3 Trace Specifications of Multi-Object Modules

3.1 Trace-Modules

Def. 13 A trace-module is a module such that for each

there exist:

• a relation ,

• a function ,

such that:

.

 is called a return relation (between values of arguments of an access-pro-

t m≤ H t 1+() s':O Q→ s H t() s s'
c

t→∈∃{ }=⇒ 
  ∧

t m> H t 1+() H t()=⇒()

A

M Q q
0

O F I E, , , , ,()= Q

A q Q∈ C-feasible H-satisfyingC t N∈ s H t()∈ o O∈, , , ,∃ q s o()=[]{ }=

q
0

A∈

Q q
0

O F I E, , , , ,() i I∈

R
i

Q
k

i
F

l
i

F
l
i××⊆

X
i
:R

i
Q

k
i→

q q', Q
k

i
r r' F

l
i

E
i

q r q' r', , ,() R
i

q r r', ,() X
i

q r r', ,() q'=∧⇔[]∈, ,∈∀
R

i

gram invocation and its output); is called an extension function and de-

scribes the values of domestic arguments after this invocation, depending on

the values of arguments and the output of the invocation.

Intuitively, a module is a trace-module iff for each the rela-

tion can be viewed as a composition of a relation () denoting new states of for-

eign arguments and a function () denoting new states of domestic arguments.

Generally, states of trace-modules have simpler forms than states of modules  for

each feasible computation and an instant of time, there is only one possible state of a

trace-module.

Lemma 1: If is a trace-module, is a computation, is a history satisfying ,

and , then is a singleton.

A proof of this lemma can be found in [5].

One should note that if the given module is deterministic, then it is also a trace-

module, since for each , is a function.

3.2 Traces

One of the basic notions in TAM is the notion of traces. Intuitively, a trace is a

term describing a fragment of a computation of a trace-module, containing all steps of

that computation that can influence the current state of a given object.

Def. 14 The set of syntactically correct traces of a trace-module

 is the smallest set such that:

1. the empty trace, denoted by “_”, is a syntactically correct trace, and

2. if , , are syntactically correct traces, then for

each the following term:

 if , or

 if

is a syntactically correct trace.

This definition of syntactically correct traces is simplified, according to our model of

modules (cf. Section 2.1). Detailed descriptions of traces can be found in [7, 14].

We use a dot (“.”) as an operator of concatenation of syntactically correct traces

with the empty trace being neutral element (for each syntactically correct trace ,

).

Not all syntactically correct traces denote fragments of feasible computations of a

trace-module.

Def. 15 Let be a feasible computation of a trace-module

, be a history satisfying , be an instant of

time and be an object. A syntactically correct trace representing the

state of object at instant in computation (from lemma 1 we know that

 is a singleton, and hence, there is only one such state) is defined as fol-

lows:

X
i

Q q
0

O F I E, , , , ,() i I∈
E

i
R

i
X

i

M C H C

t N∈ H t()

i I∈ E
i

M Q q
0

O F I E, , , , ,()=

i I∈ r r', F
l
i∈ T

1
… T

k
i

, ,
1 j k

i
≤ ≤

T
j
.i T

1
… T

j 1–
* T

j 1+
… T

k
i

r r', , , , , , , , 
  T

j
_≠

i T
1

… T
j 1–

* T
j 1+

… T
k

i

r r', , , , , , , , 
  T

j
_=

T

T._ _.T T= =

C c
i

()
i 0=

m
=

M Q q
0

O F I E, , , , ,()= H C t N∈
o O∈ T

o t C

H t()

1. if then , and

2. if then let :

- if , then is equal to the trace representing the

state of object at instant ,

- if , , are traces representing the states of

objects at instant , then:

, and

3. if , then is equal to the trace representing the state of object

 at instant .

We also say that a syntactically correct trace represents a state if a feasi-

ble computation , a history satisfying , an object and an instant

of time exist such that and .

Note that there can be many traces representing one state, but one syntactically correct

trace can represent at most one state. One should also note that a state is represented by

one or more traces iff it is a reachable state.

Def. 16 A syntactically correct trace of a trace-module is feasible iff it represents a

state.

For each module, the empty trace (“_”) is always feasible and represents the initial

state of every object.

Further on in this section by “traces” we mean always “feasible traces”. In TAM,

states of domestic objects are represented by traces. However, a state is often repre-

sented by many traces.

Def. 17 Two traces and are equivalent () iff they represent the same

state.

Notice that “ ” is an equivalence relation. Thus we can represent states of domestic

objects by the equivalence classes of “ ”. In TAM we do not use the equivalence

classes as such but we represent states of objects by the fixed representatives of the

equivalence classes. These representatives are called canonical traces.

3.3 Trace Specifications

The goal of this paper is to study specifications of non-deterministic, multi-object

modules. Without sacrificing generality, we will limit our considerations to non-pa-

rameterized specifications only. (Since the semantics of a parameterized specification

for the given actual parameters is a non-parameterized specification, all our observa-

tions apply to parameterized specifications also).

A trace specification (i.e., a specification in TAM) of a module is a document con-

sisting of the following five parts: Characteristics Section, Syntax Section, Canonical

Section, Equivalence Section, Return Values Section. Precise descriptions of trace

specifications can be found e.g. in [7, 14]. Here, we only briefly summarize the con-

tents of those sections. Example specifications can be found in [7, 9].

t 0= T _=

0 t< m 1+≤ c
t 1–

i o
1

… o
k

i

, , 
  r, , 

  r', 
 =

o o
1

… o
k

i

, ,{ }∉ T

o t 1–

o o
j

= 1 j k
i

≤≤ T
1

… T
k

i

, ,
o

1
… o

k
i

, , t 1–

T T
j
.i T

1
… T

j 1–
* T

j 1+
… T

k
i

r r', , , , , , , , 
 =

t m 1+> T

o m 1+

T q

C H C o O∈
t N∈ H t() s{ }= q s o()=

T
1

T
2

T
1

T
2

≡

≡
≡

The Characteristics Section contains information about:

• the name of the module specified by the given specification,

• foreign modules used by this module; they implicitly define the set of states

of foreign objects,

• the set of names of objects implemented by the module, and

• features of the module (e.g, whether it is single-object or multi-object).

The Syntax Section defines the set of access-programs and the types of their argu-

ments. In particular, for each access-program, the Syntax Section defines the number

of domestic and foreign arguments. The Syntax Section provides some information

that is not expressed in our model, e.g., the order of domestic and foreign arguments

for each access-program. In our model this order is fixed. Nor does our model distin-

guish types of foreign arguments. One should note that the Syntax Section implicitly

defines the set of names of access-programs and the set of syntactically correct traces.

The Canonical Section defines the characteristic predicate (canonical) of the set of

canonical traces. If the empty trace is not canonical, then this section explicitly defines

a canonical trace representing the initial state. The set of canonical traces depends on

the particular specification. In the rest of the specification, states of domestic objects

are represented by canonical traces, i.e., the set of states of domestic objects is the set

of canonical traces. This section of the specification can also define some auxiliary

functions and/or relations used in the rest of the specification.

For each access-program, the Equivalence Section contains a definition of the ex-

tension function. The domain of this function contains states of all arguments of the ac-

cess-program before the invocation and new states of all of its foreign arguments after

the invocation. The range of this function contains new states of all domestic argu-

ments of the access-program, and a sort of a marker (called a token) describing the

correctness of the invocation. This marker is not expressed in our model. The correct-

ness of the invocation has no effect on the behavior of the module. In the rest of this

paper we will skip this aspect of extension functions. One can assume that every invo-

cation is specified as a correct one.

The Return Values Section for each access-program defines a relation called the

return relation. This is a relation between states of all arguments of the access-pro-

gram before the invocation, and new states of all of its foreign arguments. This relation

determines possible new states of foreign arguments of the access-program.

A trace specification can be modelled by a trace-module as follows:

• is the set of canonical traces,

• is the canonical trace representing the initial state,

• is the set of names of objects implemented by the module,

• is the union of sets of canonical traces of foreign modules,

• is the set of names of access-programs,

• is such that:

Q

q
0

Q∈
O

F

I

E
i

q q', Q
k

i
r r' F

l
i

E
i

q r q' r', , ,() R
i

q r r', ,() X
i

q r r', ,() q'=∧⇔[]∈, ,∈∀

where is a return relation and is an extension function for an access-pro-

gram .

A trace-module thus defined is called the trace-module obtained from a trace specifi-

cation.

Def. 18 We say that a module satisfies a trace specification iff it is observationally

equivalent to the trace-module obtained from the trace specification. In this

case we also say that the specification specifies the module.

We are not only able to represent trace specifications by trace-modules but we can

specify every trace-module, which is more interesting.

Theorem: For each trace-module there exists a trace specification satisfied by this

module.

A proof of this theorem can be found in [5].

This theorem proves that the class of modules that can be specified in TAM is

equal to the class of modules observationally equivalent to certain trace-modules. One

should also note that since every deterministic module is a trace-module, every deter-

ministic module can be specified in TAM.

4 Non-Determinism Non-Expressible in the Trace Assertion Method

In this section we prove (by providing a counter-example) that not every non-de-

terministic multi-object module can be specified in TAM.

Theorem: There exists a module that does not satisfy any trace specification.

Proof: Let be a module, where:

• ,

• ,

• ,

• ,

• ,

• ,

,

• , ,

• ,

.

The module implements two sets that both can contain two elements, 0

and 1, with the following operations:

• Ins inserts an element into a set,

• In checks if an element is in a set,

• Cross takes two sets and divides non-deterministically their union into

two disjoint sets.

We will show that there does not exist a trace specification satisfied by .

R
i

X
i

i

M Q q
0

O F I E, , , , ,()=

Q ℘ 0 1,{ }()=

q
0

∅=

O a b,{ }=

F 0 1 true false, , ,{ }=

I Ins In Cross, ,{ }=

E
Ins

Q F Q F×××⊆
E

Ins
q r q' r', , ,() r'≡ r= q'∧ q r{ } 0 1,{ }∩()∪=

E
In

Q F Q F×××⊆ E
In

q r q' r', , ,() q≡ q' r'∧ r q∈()= =

E
Cross

Q
2

Q
2×⊆

E
Cross

q
1

q
2

q'
1

q'
2

, , ,() q
1

q
2

∪≡ q'
1

q'
2

q'
1

q'
2

∩∧∪ ∅= =

M

M

The proof is by contradiction. Let us assume that such a trace specification

exists. Let be a trace-module obtained from .

Let us consider the following computations:

,

,

.

 and are feasible computations for and hence also for but is

not feasible for . This means that when we insert 1 into set , and then ap-

ply the access-program Cross to sets and , 1 is in one of these sets but not

in both.

We will obtain the contradiction by proving that the computation is feasi-

ble for module .

Let , be two histories of a trace-module satisfying, respectively,

computations and . and have the same first two elements and

hence, . From lemma 1, and are singletons

(for each). Let , , and

.

Notice that because

cannot change the state of object , and because

 cannot change the state of object .

To prove that is feasible for we show that for

 there exists a state of a trace-module such

that . Notice that cannot change the value of object , so

. On the other hand, because

 and . Hence, state

can be defined as follows:

Notice that for also .

X

M Q q0 O F I E, , , , , 
 = X

C
1

Ins a 1, ,() 1,() Cross a b, ,()() In a 1, ,() true,() In b 1, ,() false,(), , ,()=

C
2

Ins a 1, ,() 1,() Cross a b, ,()() In b 1, ,() true,() In a 1, ,() false,(), , ,()=

C
3

Ins a 1, ,() 1,() Cross a b, ,()() In a 1, ,() true,() In b 1, ,() true,(), , ,()=

C
1

C
2

M M C
3

M a

a b

C
3

M

H
1

H
2

M

C
1

C
2

H
1

H
2

H
1

2() H
2

2()= H
1

t() H
2

t()
t N∈ H

1
2() H

2
2() s

1
{ }= = H

1
3() s

2
{ }=

H
2

3() s
3

{ }=

In a 1, ,() true,()

Ins a 1, ,() 1,() Cross a b, ,()()

In b 1, ,() true,()

In b 1, ,() true,()

In a 1, ,() false,()

In b 1, ,() false,()

s
1

s
2

s
3

s
1

b() s
2

b()= C
1 2, C

3 2, In a 1, ,() true,()= =

b s
1

a() s
3

a()=

C
2 2, In b 1, ,() true,()= a

C
3

M

C
3 3, In b 1, ,() true,()= s

4
M

s
2

s
4

C
3 3,→ C

3 3, a

s
4

a() s
2

a()= s
4

b() s
3

b()=

s
2

b() s
1

b()= C
3 3, C

2 2, In b 1, ,() true,()= = s
4

s
4

j()
s

2
a() if j a=

s
3

b() if j b=



=

z In a 1, ,() true,()= s
3

s
4

z→

A history satisfying computation is defined as follows:

Thus, computation is feasible for but not feasible for . Module is

not observationally equivalent to , and does not satisfy . ■

5 “New” Trace-Modules

We will now redefine the notion of trace-modules in such a way, that for every

module there exists an observationally equivalent “new trace-module”. This reduces

the problem of specification of multi-object modules in TAM to that of specification of

new trace-modules.

Def. 19 A new trace-module is such a module that for each

there exist:

• a number ,

• a relation ,

• a function ,

such that , and

 is called a return relation, is called an extension function and is

called a number of primary domestic arguments of access-program . The

largest is called the maximum number of primary domestic arguments of

access-program .

Intuitively, in new trace-modules we allow new states of some domestic argu-

ments to be specified by the return relation. One should note that for a given new trace-

module and the numbers of primary domestic arguments, for each access-program

there exist exactly one return relation and one extension function.

Each trace-module is also a new trace-module (for); however, the class of

new trace-modules is wider than the class of trace-modules.

Theorem: For each module , there exists a new trace-module observationally

equivalent to .

A proof of this theorem can be found in [5].

s
1

In a 1, ,() true,() s
2

In b 1, ,() true,() s
3

In b 1, ,() true,()

s
4

In a 1, ,() true,()

H
3

C
3

H
3

t()
H

1
t() if t 3≤

s
4

{ } if t 3>






=

C
3

M M M

M M X

Q q
0

O F I E, , , , ,() E
i

1 p
i

k
i

≤ ≤

R
i

Q
k

i
F

l
i

Q
k

i
p

i
–

F
l
i×××⊆

X
i
:R

i
Q

p
i→

q Q
k

i
r F

l
i∈,∈ q' Q

k
i

p
i

–
r' F

l
i

R
i

q r q' r', , ,()[]∈,∈∃∀

q q', Q
k

i
r r' Q

l
i

E
i

q r q' r', , ,() R
i

q r q'
p

i
1+

… q'
k

i

, , 
  r', , , 

  ∧⇔∈, ,∈∀

X
i

q r q'
p

i
1+

… q'
k

i

, , 
  r', , , 

  q'
1

… q'
p

i

, , 
 =

R
i

X
i

p
i

i

p
i

i

p
i

k
i

=

M M

M

6 “New” Trace Specifications

The basic difference between new trace-modules and trace-modules is in the defi-

nition of the extension function:

• in trace-modules, an extension function determines new states of all domestic ar-

guments of an access-program,

• in new trace-modules, an extension function defines only new values of some (at

least one) domestic arguments, called the primary (domestic) arguments; possible

new values of the rest of domestic arguments, called the secondary (domestic) ar-

guments, are defined by the return relation.

This difference is reflected by including within a new-trace, new-traces that denote

new states of the secondary domestic arguments. It also changes the interpretation of

traces. A trace represents a new value of one of the primary domestic arguments of its

last invocation.

Def. 20 Let be a new trace-module and be the

maximum numbers of primary domestic arguments of access-programs. The

set of syntactically correct new-traces of is the smallest set such that:

1. the empty trace, denoted by “_”, is a syntactically correct new-trace, and

2. if , , , and are

syntactically correct new-traces, then the following term:

 if , or

 if

is a syntactically correct new-trace.

Numbers of primary arguments influence the form of new-traces in such a way

that a new-trace includes sub-new-traces describing new states of all secondary argu-

ments of access-program invocations. This definition allows all possible numbers of

primary arguments, i.e., from 1 to the maximum number of primary arguments

(). However, the simplest, not redundant form is for the maximum number

of primary arguments ().

The definition of feasibility of new-traces and the definition of feasible new-traces

representing states are more complex and can be found in [5].

We allow new-traces with different numbers of primary arguments, however the

most expressible are new-traces with the maximum number of primary arguments.

They contain the fewest sub-new-traces representing new states of secondary domestic

arguments, and they can represent new states of the largest number of domestic argu-

ments. Each new-trace with the number of primary arguments less than the maximum

can be easily transformed to one with the maximum number of primary arguments by

removing some of sub-new-traces denoting new states of secondary domestic argu-

ments.

The equivalence relation on feasible new-traces (“ ”) and the set of canonical

new-traces can be defined the same way as for traces. However, it can happen that

some of reachable states cannot be represented by any feasible new-trace. We discuss

M Q q
0

O F I E, , , , ,()= p
i

()
i I∈

M

i I∈ 1 j u p
i

≤ ≤ ≤ r r', F
l
i∈ T

1
… T

k
i

, , U
u 1+

… U
k

i

, ,

T
j
.i T

1
… T

j 1–
* T

j 1+
… T

k
i

r U
u 1+

… U
k

i

r', , , , , , , , , , , 
  T

j
_≠

i T
1

… T
j 1–

* T
j 1+

… T
k

i

r U
u 1+

… U
k

i

r', , , , , , , , , , , 
  T

j
_=

1 u p
i

≤ ≤
u p

i
=

≡

the consequences of this fact later on.

Def. 21 We say that a state of an object implemented by a new trace-module

 is trace-expressible if there exists a feasible new-

trace representing .

The form of a new trace specification is similar to the form of a trace specification.

The form of the Characteristics Section is the same. The Syntax Section defines also

numbers of primary arguments of access-programs. It defines implicitly the subset of

new-traces used in the specification. The Canonical Section defines a set of canonical

new-traces and a canonical new-trace representing the initial state. The Equivalence

Section defines an extension function for each access program. The range of this func-

tion contains only canonical new-traces, representing new states of the primary argu-

ments. The Return Values Section defines a return relation for each access program.

However, this relation is defined on states of all arguments passed to the access-pro-

gram, and new states of all secondary domestic arguments and all foreign arguments of

the access-program.

A new trace specification can be modelled as a new trace-module

 in the following way:

• is the set of canonical new-traces,

• is the canonical new-trace representing the initial state,

• is the set of names of objects implemented by the module,

• is the union of sets of canonical traces of all foreign modules,

• is the set of names of access programs,

• for each , is a relation defined as follows:

An example specification of the module with the “Cross” access-program (cf.

Section 4) can be found in [5].

It turns out that not all new trace-modules can be specified in the proposed version

of TAM. It can happen that some of the reachable states are not trace-expressible. In

such a case we are simply unable to represent these states in the specification. But if all

reachable states of a new trace-module are trace-expressible then we can specify such

a module in the proposed version of TAM.

Theorem: Let be a new trace-module. If all reachable

states of are trace-expressible, then there exists a new trace specifica-

tion satisfied by .

A proof of this theorem can be found in [5].

A class of modules which can be specified in the proposed version of TAM is the

class of modules observationally equivalent to some new trace-modules having all

(reachable) states trace-expressible.

q Q∈
M Q q

0
O F I E, , , , ,()=

q

Q q
0

O F I E, , , , ,()
Q

q
0

O

F

I

i I∈ E
i

q q', Q
k

i
r r' F

l
i

E
i

q r q' r', , ,() R
i

q r r' q'
p

i
1+

… q'
k

i

, , 
 , , , 

  ∧⇔∈, ,∈∀

X
i

q r r' q'
p

i
1+

… q'
k

i

, , 
 , , , 

  q'
1

… q'
p

i

, , 
 =

M Q q
0

O F I E, , , , ,()=

M

M

7 Conclusions

The main goal of this paper was to investigate the expressiveness of TAM. As it

was proved in [8], every single-object module can be specified in TAM. Also every de-

terministic multi-object module can be specified in TAM. However, there exists a non-

deterministic multi-object module which cannot be specified in TAM.

We have defined a sub-class of modules (called trace-modules) which effectively

characterizes the expressiveness of TAM. Each trace-module can be specified in TAM

and each specification can be modelled by a trace-module. Hence, the class of multi-

object modules which can be specified in TAM is the class of modules observationally

equivalent to some trace-modules. This situation can be illustrated by the following di-

agram:

We have also proposed some modifications in TAM and we have defined an ap-

propriate sub-class of modules (called new trace-modules) to model specifications in

the proposed version of TAM. It is a property of this class that each module is observa-

tionally equivalent to some new trace-module. We have extended the expressiveness

of TAM, although we have not covered the whole class of non-deterministic multi-ob-

ject modules. Not all new trace-modules can be specified in the proposed version of

TAM because it can happen that some (reachable) states of objects implemented by the

module cannot be expressed by traces.

If we could express by traces all (reachable) states of objects implemented by new

trace-modules then we would be able to specify all modules in TAM. This problem

still limits the usefulness of TAM in specification of some non-deterministic multi-ob-

ject modules. Extension of the expressiveness of traces, to cover all reachable states of

new trace-modules, will be one of our goals in future research.

Acknowledgements

This paper emerged from many discussions on TAM we have had in Hamilton

(with D.L. Parnas and his group), in Hull, and in Warsaw. We are very grateful to all

our colleagues for their contribution, and especially to J. Mincer-Daszkiewicz and K.

Stencel.

This work was partly supported by the Natural Sciences and Engineering Re-

search Council of Canada (NSERC), by the State Committee for Scientific Research in

Poland (KBN, grant 8 S503 040 04), by Digital Equipment’s European External Re-

search Programme (EERP PL-002), and by NATO Linkage grant

(HTECH.LG.941314).

Deterministic

Modules

Trace-Modules

Modules Specifiable in TAM

All Modules

References

1. Bartussek, W., Parnas, D.L., “Using Traces to Write Abstract Specifications for

Software Modules”, in Gehani, N., McGettrick, A.D. (Eds.), Software Specifica-

tion Techniques, AT&T Bell Telephone Laboratories, 1985, pp. 111-130.

2. Bojanowski, J., Iglewski, M., Madey, J., Obaid, A., “Functional Approach to Pro-

tocol Specification”, in Protocol Specification, Testing and Verification XIV,

Vuong, S.T., Chanson, S.T. (Eds.), Chapman & Hall, 1995, pp. 395-402.

3. Erskine, N., “The Usefulness of the Trace Assertion Method for Specifying De-

vice Module Interfaces”, CRL Report No. 258, McMaster Univ., CRL, Telecom-

mun. Res. Inst. of Ontario (TRIO), Hamilton, Ont., Canada, 1992.

4. Hoffman, D.M., “The Trace Specification of Communications Protocols”, IEEE

Trans. on Computers, Vol. C-34, No. 12, Dec.r 1985, pp. 1102-1113.

5. Iglewski, M., Kubica, M, Madey, J., “Trace Specifications of Non-deterministic

Multi-object Modules”, Technical Report TR 95-05 (205), Warsaw Univ., Inst. of

Informatics, Warsaw, Poland, 1995.

6. Iglewski, M., Kubica, M, Madey, J.,“Editor for the Trace Assertion Method”, in:

Proc. 10th Int. Conf. of CAD/CAM, Robotics and Factories of the Future: CARs &

FOF’94, Zaremba, M. (Ed.), OCRI, Ottawa, Ont., Canada, 1994, pp. 876-881.

7. Iglewski, M., Madey, J., Parnas, D.L., Kelly, P.C., “Documentation Paradigms”,

CRL Report No. 270, McMaster Univ., CRL, Telecommun. Res. Inst. of Ontario

(TRIO), Hamilton, Ont., Canada, 1993.

8. Iglewski, M., Madey, J., Stencel, K., “On Fundamentals of the Trace Assertion

Method”, Technical Report TR 94-09 (198), Warsaw Univ., Inst. of Informatics,

Warsaw, Poland, 1994.

9. Iglewski, M., Mincer-Daszkiewicz, J., Stencel, K., “Some Experiences with Spec-

ification of Non-deterministic Modules”, Technical Report RR 94/09-7, Univer-

sité du Québec à Hull, Département d’Informatique, Hull, Québec, Canada, 1994.

10. Iglewski, M., Kubica, M., Madey, J., Mincer-Daszkiewicz, J., Stencel, K., “Report

of the Trace Assertion Method 95”, in preparation.

11. McLean, J.D., “A Formal Foundation for the Abstract Specification of Software”,

Journal of the ACM, Vol. 31, No. 3, July 1984, pp. 600-627.

12. Parnas, D.L., “On the Criteria to be used in Decomposing Systems into Modules”,

Commun. ACM, Vol. 15, No. 12, Dec. 1972, pp. 1053-1058.

13. Parnas, D.L., Madey, J., “Functional Documents for Computer Systems”, Science

of Computer Programming, to appear in 1995.

14. Parnas, D.L., Wang, Y., “The Trace Assertion Method of Module Interface Speci-

fication”, Technical Report 89-261, Queen’s Univ., C&IS, Telecommun. Res. Inst.

of Ontario (TRIO), Kingston, Ont., Canada, 1989.

15. Wang, Y., “Specifying and Simulating the Externally Observable Behavior of

Modules”, (Ph.D. Thesis), CRL Report No. 292, McMaster Univ., CRL, Telecom-

mun. Res. Inst. of Ontario (TRIO), Hamilton, Ont., Canada, 1994.

