
 1

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

Michal IGLEWSKI Abdellatif OBAID
Université du Québec à Hull
Département d’informatique

C.P. 1250, succ.”B”, Hull, Que., CANADA
J8X 3X7

e-mail: iglewski@qucis.queensu.ca, obaid@UQHULL.bitnet

Abstract

LOTOS is a specification language that was developed within the ISO as a formal description tech-
nique for protocol specification and validation. Local area networks are growing in popularity and
the design of communication protocols for these networks should be verified using formal descrip-
tion techniques. In this paper we present a specification, written in LOTOS, of an access protocol for
a Token Ring Local Area Network. The low-level protocol and service described is a subset of the
IEEE 802.5 standard.

1 Introduction

LOTOS ([ISO 87], [Bol 87] and [Log 88]) is a specification language that is intended for specifying
distributed systems. It allows systems to be composed of concurrently running subsystems which
can communicate both synchronously and asynchronously. LOTOS has been widely used to specify
Open Systems Interconnection (OSI) protocols and services (cf. e.g. [Sco 89]). Though this lan-
guage has features that allow describing system behaviors on different levels of abstraction, it was
usually used only for fairly high-levels protocols. In this paper we show how LOTOS can be used
for low-level protocols and services. We choose a subset of the IEEE 802.5 Token Ring LAN [IEEE
85] and specify its behavior in LOTOS. First, we describe a protocol for one station connected to
this LAN. Then we specify the behavior of the whole network with several stations connected in a
ring configuration. Several simulations of the specification have been run using a LOTOS interpret-
er [Haj 88].

We do not describe LOTOS language in this paper - a good tutorial can be found e.g. in [Bol 87].

2 Token Ring Network

A token ring network [Dix 87] is a collection of stations serially connected by a transmission medi-
um. Each station is identified by a unique address and knows the address of its neighbors. Informa-
tion is transferred sequentially, bit by bit, from one station to the next (always in one direction). A
special bit pattern, called a token frame (in short: token), circulates around the ring whenever all sta-
tions are idle. When a station wishes to transfer some data, it must first capture the token and then
modify it to a start-of-data-frame sequence and append control fields, and the data to be transferred.
The so-formed data frame is transmitted to the downstream neighbor. This station possibly modifies
one particular field and copies the data (if the frame was sent to this station) but always passes the
frame to the downstream neighbor. Eventually the data frame reaches the original sender, who
changes it back to the token. Because there is only one token, only one station can transmit data at a

 2

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

given instant; because a sender must always return the token to the ring (once it converted the data
frame back into the token frame), no station can monopolize the ring. If the token is passed
around the ring without being used, then a station can once again seize it and transmit the next
data frame.

Within the IEEE standard there is also a possibility to use priorities for the ring access control. To
each station is assigned a priority ranking from zero to seven, what gives a station an opportunity
to reserve the use of the ring for the next transmission round. This reservation scheme is not dis-
cussed in this paper.

2.1 Token Ring Protocol Architecture

The token ring protocol uses only the two lowest layers of the OSI Reference Model: the Physical
layer and the Data Link layer, with the latter subdivided into Medium Access Control layer
(MAC) and the Logical Link Control layer (LLC). The three layers communicate via Service Ac-
cess Points, MSAP and PSAP, as shown in Figure 1.

Figure 1: Token Ring Protocol architecture

2.1.1 LLC Layer Functions

The LLC supports media independent data link functions, and uses the services of the MAC layer
to provide services to the network layer. It provides two forms of service for transmission of data
frames between two neighbor stations: unacknowledged connectionless service and connection-
oriented service. With the unacknowledged connectionless service each frame sent is individually
acknowledged. This is achieved by the use of three service primitives: L_DATA.request, L_DA-
TA.indication and L_DATA.confirmation. When a connection-oriented service is offered, the
source and destination stations establish a connection before any data are transferred (the extra
service primitive L_DATA.response is used). We will specify only the unacknowledged connec-
tionless service in this paper.

2.1.2 MAC Layer Functions

The MAC layer provides mechanisms to control the access to the shared medium; it is therefore a

LSAP

LLC

MSAP

MAC

PSAP

Physical
layer

medium

 3

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

necessary part of the protocol ensuring that two stations do not send data at the same time. The MAC
layer exchanges frames between data link layer entities. When there is no data traffic on the ring, the
token circulates until a station sets a specific bit (called token bit T) to 0, thereby seizing the token. If
the address in the frame’s header indicates that the data is destined for the attached station, the ring in-
terface copies the data and passes the information to this station.

Frame formats

In the IEEE 802.5 standard [IEEE 85] messages are structured as frames. There are two frame for-
mats: token frames and data frames.

The token frame format (cf. Figure 2) consists of three fields only: the Starting Delimiter (SD), the
Access Control (AC), and the Ending Delimiter (ED). The AC field contains a one-bit token indicator
(T) that is set to 0 to indicate the token frame.

The data frame format consists of 9 fields (cf. Figure 3). Three of them (SD, AC, ED) are the same as
before, with token indicator T set to 1. The Frame Control field (FC) defines the type of frame (i.e.
MAC frame or LLC frame), the address fields identify the sending and receiving stations, the Infor-
mation field contains user data, the Frame-Check Sequence (FCS) field is used for error checking,
and the Frame Status (FS) field is used to indicate the conditions in which the receiving station has
accepted or refused the frame. The latter field contains two special bits, A and C. They are transmitted
as 0 by the station originating the frame. If another station recognizes the destination address as its
own address, it will set the bit A to 1. If it copies the frame (into its receive buffer), it will also set the
bit C to 1. Three combinations are possible:

a) A=0, C=0: Destination not present. The station will fail to accept the frame.

b) A=1, C=0: Destination present but frame not accepted (e.g. because there is not enough buffer
space). The sending station may retry later.

c) A=1, C=1: Destination present and frame accepted. When the frame returns back to the origi-
nal sender, this combination constitutes a positive acknowledgment.

Starting Access Ending
Delimiter Control Delimiter
(1 octet) (1 octet) (1 octet)

T : Token bit
P P P : Priority bits
M : Monitor bit
RRR : Reservation bits

P P P T M R R R

Figure 2: Token Frame Format

Starting Access Frame Destination Source Information Frame-Check Ending Frame
Delimiter Control Control Address Address Sequence Delimiter Status
 (1 octet) (1 octet) (1 octet) (2 or 6 octets) (2 or 6 octets) (0 or more oct.) (4 octets) (1 octet) (1 octet)

Figure 3: Data Frame Format

 4

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

2.1.3 Physical Layer Functions

The physical layer is responsible for the physical transfer of bits between stations. The interfacing
between a station and the ring is done via the Ring Interface Unit (RIU) which is an active device
attached to each station that has the ability to recognize its own address in the received data in or-
der to accept them. Each bit arriving within a specified time interval is copied into 1-bit buffer and
then copied out onto the ring. While in the buffer, the bit can be inspected and possibly modified
before being retransmitted.

The IEEE 802.5 standard physical layer provides for detailed description of the encoding tech-
niques that are used. Since this layer is concerned with many electrical details, it is usually not
specified formally. In our specification we model the physical layer at the byte level rather than at
a bit one. This was necessary because otherwise the specification itself and the simulation time
would have been very long.

3 Protocol Specification

Before presenting the specification let us explain how we model the communication. As shown in
Figure 1, the ring is modelled by a single gate called medium. In order to model several stations
connected to the same ring, the behavior expression describing the interaction will also contain
the identity of the sending station together with some extra information. For example, if station n
wants to perform a request for sending data d to its downstream neighbor, it writes
medium!req!next(n)!d to the communication channel medium.

As mentioned before, we assume that a byte (a value of type Octet in the specification) is the ele-
mentary unit of exchanged information. For this reason, in several parts of this specification, we
analyze a frame octet by octet. This procedure allows us to analyze, for example, the AC field in
order to recognize if the frame is the token or not. We also treat the source and destination address
fields as a single octet.

Any octet that is transmitted by the MAC layer must be confirmed by the physical layer using a
constant value called conf.

3.1 Specification of a Station

The behavior of a station with the three layers described above is modelled by the process Station:

process Station[lsap,medium] (Node:Octet) : noexit :=
hide msap,psap in
(LLC[lsap,msap] (Node)
|[msap]|

MAC[msap,psap] (Node)
|[psap]|

PhyLayer[psap,medium] (Node)
)

endproc

3.2 Specification of the LLC Layer

The LLC layer is modelled by the process LLC. This process has two gates that represent the two
SAPs: lsap and msap. It can send and receive data concurrently:

 5

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

process LLC [lsap,msap] (Node:Octet) : noexit :=
Receive [lsap,msap]

|||
Send [lsap,msap]

endproc

Process Receive either receives new data from the MAC layer throughout the gate msap or refuses
to receive because its buffer is full (this is modelled by the internal event i):

process Receive [lsap,msap] : noexit :=
i;Receive [lsap,msap] (* simulating a “buffer full” condition *)

[]
msap!ind?Source:Octet?Data:OctetString;
lsap!ind!Source!Data;
Receive [lsap,msap]

endproc

Sending is done by the process Send. This process receives a request from the station to send data
to another station identified by Dest. Then this request is sent to MAC layer by the process
RequestToSend:

process Send [lsap,msap] : noexit :=
lsap!req?Dest:Octet?Data:OctetString;
RequestToSend [msap] (Dest,Data)

 >>
Send [lsap,msap]

endproc

RequestToSend is the process that actually executes the request on behalf of an LLC layer entity
and waits for confirmation by receiving the FS field. When this arrives, it checks the value of bits
A and C of the received frame: if the bits A and C are set to 1 this means that the frame was cor-
rectly received and copied; if the bit A is set to 1 and the bit C is set to 0 this means that the receiv-
ing station did not accept the frame sent to it; if the bit A is set to 0 this means that the destination
is unknown. In the first and the third case this process simply terminates and passes control to pro-
cess Send. In the second case it keeps on trying by sending the same frame. Eventually, this pro-
cess will terminate at either the first or the third condition.

process RequestToSend [msap] (Dest:Octet,Data:OctetString) : exit :=
msap!req!Dest!Data;
msap!conf?FS:Octet;
([is_set_bit_A(FS) and is_set_bit_C(FS)]->

exit (* frame received and copied *)
[]

[is_set_bit_A(FS) or not(is_set_bit_C(FS))]->
RequestToSend [msap] (Dest,Data) (* frame not copied *)

[]
[not(is_set_bit_A(FS))]->

 6

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

exit (* unknown address *)
)

endproc

3.3 Specification of the MAC Layer

The MAC layer is modelled by the MAC process. In the specification that follows we assume that
neither we have frame sequencing capability nor we perform error correction (i.e. we ignore the
FCS information). The MAC process is specified as follows:

process MAC [msap,psap] (Node:Octet) : noexit :=
Monitor[psap](Node)
>>
Manager[msap,psap](Node)

endproc

According to the IEEE standard, one particular station should play the role of the monitor. One of
the functions of the monitor is to generate the token when it is lost or damaged. We use the moni-
tor to decide which station initially puts the token into the ring (station_1 in our case). Process
Monitor sends to station_1 a token frame (bit T = 0) with bits A and C equal to 0. This is done in
several steps. First, the physical layer puts the station in transmit mode. Then, station_1 sends the
token frame octet by octet and for each octet it transmits it waits for a confirmation from the phys-
ical layer. The monitor behaves as follows:

process Monitor[psap](Node:Octet) : exit :=
[Node eq station_1] ->

psap!ind!transmit?OctetRing:Octet;
psap!req!sd;
psap!conf;
psap!ind!transmit?OctetRing:Octet;
psap!req!Octet(0,0,0,0,0,0,0,0); (* AC: Token Bit = 0 *)
psap!conf;
psap!ind!transmit?OctetRing:Octet;
psap!req!ed;
psap!conf;
exit

[]
[Node ne station_1] ->

exit
endproc

Process Manager is responsible for controlling the access to the ring. It behaves differently de-
pending on whether the station is in the repeat mode or in the transmit mode. If it is in the repeat
mode and gets the token frame (with bit T = 0) from the physical layer, it enters the transmit
mode. In this mode it transmits data (after setting bit T to 1) if the station has something to send,
by calling process SendFrame, or it simply retransmits the token, if there is nothing to send.

If a station is in the transmit mode and gets the AC octet, then it enters the repeat mode and con-
tinues receiving the subsequent octets until it receives the Destination Address. This field is
checked by the station to see if it is the proper destination. If so, it copies the field (by calling

 7

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

CopyFrame).

In the repeat mode any received octet that is different from SD is simply passed forward as is.

Process Manager is described as follows:

process Manager[msap,psap](Node:Octet) : noexit :=
(psap!ind!repeat?Data:Octet[Data eq sd];

(psap!ind!transmit?AC:Octet[not(is_set_bit_T(AC))];
((exit(nothingToSend,Octet(0,0,0,0,0,0,0,0),

Octet(Octet(0,0,0,0,0,0,0,0)))
[>

msap!req?Dest:Octet?UserData:OctetString;
exit(somethingToSend,Dest,UserData)

)
>> accept

LLCreq:LLCrequest,
Dest:Octet,
UserData:OctetString

in
([LLCreq eq nothingToSend] ->

psap!req!AC;
psap!conf;
exit

[]
[LLCreq eq somethingToSend] ->

psap!req!setBit_T(AC);
psap!conf;
SendFrame [msap,psap] (Node,Dest,UserData)

)
)

[]
psap!ind!transmit?AC:Octet[is_set_bit_T(AC)];
psap!req!AC;
psap!conf;
psap!ind!repeat?FC:Octet;
psap!ind!repeat?Dest:Octet;
([Dest eq Node] ->

CopyFrame[msap,psap]
[]

[Dest ne Node] -> exit
)

)
[]

psap!ind!repeat?Data:Octet[Data ne sd];
exit

)
>> Manager[msap,psap] (Node)

endproc

 8

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

Process CopyFrame assumes that a station is in the repeat mode. Upon receiving the Source Ad-
dress, this process copies the subsequent octets. The number of copied octets equals to a constant
value given in UserDataLength. CopyFrame concatenates these octets (by calling process
CopyOctets) to form a frame (this is actually done in two steps: one for user data and one for FCS
string). The last field expected in the repeat mode is the ED octet. Upon receiving this field the
station changes its mode into the transmit one.

In the transmit mode either the condition BufferFull is generated or the received frame is deliv-
ered to the LLC layer through the msap gate. In the former case, the received frame is put back
into the ring by setting the bit A to 1. In the latter case, the bits A and C are set to 1 to indicate the
normal operation.

process CopyFrame[msap,psap] : exit :=
psap!ind!repeat?Source:Octet;
(CopyOctets[psap] (userDataLength)

>> accept Data:OctetString in
(CopyOctets[psap] (fcsLength)

>> accept FCS:OctetString in
(psap!ind!repeat?ED:Octet;

psap!ind!transmit?FS:Octet;
((exit(BufferFull)

[>
msap!ind!Source!Data;
exit(Copied)

)
>> accept BState:BufferState in
([BState eq BufferFull] ->

psap!req!setBit_A(FS);
psap!conf;
exit

[]
[BState eq Copied] ->

psap!req!setBits_AC(FS);
 psap!conf;

exit
)

)
)

)
)

endproc

CopyOctets is the process that forms frames out of the received octets. The number of these octets
is passed as a parameter. This process is described as follows:

process CopyOctets[psap] (DataLength:Nat) : exit(OctetString) :=
Copy[psap] (DataLength,<>)
>>
accept Data:OctetString in
exit(Data)

 9

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

where
process Copy[psap] (Length:Nat,Data:OctetString) : exit(OctetString) :=

[Length eq Succ(0)] ->
psap!ind!repeat?X:Octet;
exit(X + Data)

[]
[Length gt Succ(0)] ->

 psap!ind!repeat?X:Octet;
Copy[psap](dec(Length),X + Data)

endproc
endproc

Sending frames is accomplished by process SendFrame. In the transmit mode, if a station has
something to send, this process sends a frame given its user data (UserData), the identity of the
sending station (Node) and the identity of the destination (Dest). This process sends frames (one
field at-a-time). While sending, a station may receive the first octet of its own frame (that is the
field SD) or it may happen that some idle time is required before this field is received. When this
field is received, the token is reinserted (bit T = 0). Process SendFrame is decomposed into two
concurrent processes (TransmitFrame and RemoveFrame) that synchronize by executing the ac-
tion sdIsBack:

process SendFrame[msap,psap]
(Node:Octet, Dest:Octet, UserData:OctetString) : exit :=

hide sdIsBack in
TransmitFrame[psap,sdIsBack] (Node,Dest,UserData)
|[sdIsBack]|
RemoveFrame[msap,psap,sdIsBack]

endproc

TransmitFrame is the process that transmits frames octet by octet onto the ring. It also waits for
confirmation after each octet it sends. After receiving the frame that it sent, it puts the token back
into the ring:

process TransmitFrame[psap,sdIsBack]
(Node:Octet, Dest:Octet, UserData:OctetString) : exit :=

psap!req!Octet(0,0,0,0,0,0,0,0); (* FC: not used *)
psap!conf;
psap!req!Dest;
psap!conf;
psap!req!Node; (* local node *)
psap!conf;
TransmitOctets[psap](UserData,userDataLength) >>
TransmitOctets[psap](fcs,fcsLength) >>
psap!req!ed;
psap!conf;
psap!req!Octet(0,0,0,0,0,0,0,0); (* FS: bits A and C equal 0 *)
psap!conf;
WaitForSD[psap,sdIsBack] >>
PutToken[psap]

endproc

 10

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

Process TransmitOctets is responsible for transmitting a number of octets given by the parameter
Length. This process is called by SendFrame for sending user data as well as FCS strings. Its de-
scription is as follows:

process TransmitOctets[psap] (Data:OctetString, Length:Nat) : exit :=
[Length eq Succ(0)] ->

psap!req!first(Data);
psap!conf;
exit

[]
[Length gt Succ(0)] ->

psap!req!first(Data);
psap!conf;
TransmitOctets[psap](tail(Data),dec(Length))

endproc

Process WaitForSD models idle time for a station. If a station finishes transmitting the entire
frame prior to receiving its own starting delimiter (SD), it continues to transmit idle characters
(contiguous 0-bits) on the psap gate until it receives the first field of its own frame. This is sig-
naled to the process RemoveFrame which waits for a synchronization on action sdIsBack.

process WaitForSD[psap,sdIsBack] : exit :=
(exit(sdStillComing)

[>
sdIsBack; exit(sdArrived)

)
>> accept SDst:SDstate in
([SDst eq sdStillComing] ->

psap!req!idle;
psap!conf;
WaitForSD[psap,sdIsBack]

[]
[SDst eq sdArrived] ->

exit
)

endproc

Process PutToken simply generates and inserts a token into the ring:

process PutToken[psap] : exit :=
psap!req!sd;
psap!conf;
psap!req!Octet(0,0,0,0,0,0,0,0);(* AC, token bit = 0 *)
psap!conf;
psap!req!ed;
psap!conf;
exit

endproc

 11

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

By executing the action sdIsBack (after receiving the field SD of its frame), RemoveFrame causes
that TransmitFrame puts the token back into the ring. At the same time this process continues to
accept the rest of the frame until it receives the field ED.

process RemoveFrame[msap,psap,sdIsBack] : exit :=
psap!ind!transmit?Data:Octet[Data eq sd];
(sdIsBack; (* tell to TransmitFrame that it can *)

exit (* put back the token on the ring *)
|||

psap!ind!transmit?AC:Octet;
psap!ind!transmit?FC:Octet;
psap!ind!transmit?Dest:Octet;
psap!ind!transmit?Source:Octet;
WaitForED[msap,psap]

)
[]

psap!ind!transmit?Data:Octet[Data ne sd];
RemoveFrame[msap,psap,sdIsBack]

endproc

Waiting for the ED field is done by the process WaitForED:

process WaitForED[msap,psap] : exit :=
psap!ind!transmit?Data:Octet[Data eq ed];
psap!ind!transmit?FS:Octet;
msap!conf!FS;
exit

 []
psap!ind!transmit?Data:Octet[Data ne ed];
WaitForED[msap,psap]

endproc

3.4 Specification of the Physical Layer

Depending on the mode, the physical layer repeats or transmits the octets it receives. In our speci-
fication this layer describes the behavior of the Ring Interface Unit (RIU). This interface commu-
nicates with the process Medium via the gate medium using the communication pattern described
at the beginning of the Section 3.

process PhyLayer [psap,medium] (Node:Octet) : noexit :=
RIU[psap,medium](Node)

endproc

RIU is the process that models the interface between a station and the ring. In the repeat mode, the
received octets are simply copied onto the gate psap. In the transmit mode, it sends each received
octet and waits for confirmation. In both modes data is sent to the next station (with identifier
next(Node)). This process is described as follows:

 12

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

process RIU[psap,medium](Node:Octet) : noexit :=
medium!ind!Node?Data:Octet;
(psap!ind!repeat!Data; (* repeat state *)

 exit(Data)
[]

psap!ind!transmit!Data; (* transmit state *)
psap!req?Data:Octet;
psap!conf;
exit(Data)

) >> accept Data:Octet in
medium!req!next(Node)!Data;
RIU[psap,medium](Node)

endproc

The process Medium is specified below. It simply represents connections between the Ring Inter-
face Units:

process Medium[medium](Node:Octet) : noexit :=
medium!req!Node?Data:Octet;
medium!ind!Node!Data;
Medium[medium](Node)

endproc

3.5 Protocol Specification

It is essential that each station knows its number, so that it can identify its downstream neighbor.
We model the protocol by linking several stations to a network according to the diagram given in
Figure 4.

Figure 4: The Ring Architecture and the Token

station4

 token

station3 station2

station6 . . . stationN

station5 station1

 13

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

The overall structure of this protocol can be presented as shown below. For simplicity, we chose
to model a collection of three stations only.

hide medium in
(InitRing[medium] >>
(Station[lsap,medium](station_1)
|||
Station[lsap,medium](station_2)
|||
Station[lsap,medium](station_3)
))

|[medium]|
(Medium[medium](station_1)
|||
Medium[medium](station_2)
|||
Medium[medium](station_3)
)

InitRing simply allows to activate each interface by sending idle octets. It behaves according to
the following process:

process InitRing [medium] : exit :=
medium!req!station_1!idle;
medium!req!station_2!idle;
medium!req!station_3!idle;
exit

endproc

The generalization of this scheme could also be done as follows:

hide medium in
(InitRing[medium] >> Stations[lsap,medium](NbOfStations))
|[medium]|
Media[medium](NumberOfConnections)

where Stations is the description of several parallel instantiations of one station. Process Station
can be defined as follows:

process Stations[lsap,medium](N: Integer) : noexit :=
[N eq 0] -> Station[lsap,medium](N)
[]
[N gt 0] -> (Station[lsap,medium](N)

 |||
 Stations[lsap,medium](N-1))

endproc

 14

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

and Media could be defined in a similar way, as follows:

process Media[medium](N: Integer) : noexit :=
[N eq 0] -> Medium[medium](N)
[]
[N gt 0] -> (Medium[medium](N)

 |||
 Media[medium](N-1))

endproc

The text of the protocol specification is given in the Appendix 1. Data types are specified in the
ACT ONE specification language that is part of LOTOS. We used the LOTOS data type library
[ISO 87]. Part of an execution session script is given in the Appendix 2.

4 Conclusions

We used LOTOS to specify a simplified version of the IEEE 802.5 protocol. This language is suit-
able for expressing the modularity of different layers (LLC, MAC, Physical). We found out that it
is also relatively easy to extend the existing specification. For example, when we replaced first
version of the Monitor process by a new, elaborate one, it did not cause any global changes.

LOTOS has other powerful constructs for specifying more complicated systems. For example, we
could use the full synchronization operator, ||, in order to apply the constraint oriented style. It
would allow for more constructive specification.

However, we have noticed some shortcomings in the capabilities of the language. Consider a sta-
tion that has some data to send. It must seize the token and append the data octets to the beginning
of the frame. When a station does not have any data to send, it simply passes the token frame to
the next station. In order to specify such a situation we used the LOTOS disabling operator, [>, as
illustrated (in a simplified form) below:

(exit(nothingToSend,anyOctet,anyOctet)
[>

msap!req?Dest:Octet?UserData:Octet;
exit(somethingToSend,Dest,UserData)

)
>> accept Condition:ConditionType,Octet1:Octet,Octet2:Octet
in
([Condition eq nothingToSend] -> do_this
[]

[Condition eq somethingToSend] -> do_that
)

This solution is a bit artificial. We used the disabling operator because we thought that the trans-
mission of data could be viewed as an interruption of the token circulation. According to the se-
mantics of the language, the behavior expressed above is equivalent to:

i; do_this [] msap!req?Dest:Octet?UserData:Octet; i; do_that

However, this expression models a behavior with the “priority” assigned to the first condition.

 15

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

What we actually want to model is the possibility to have both alternatives somehow exclusive: if
there is something to send then the first alternative should not be offered. This capability is not
possible in LOTOS.

A fundamental problem that we encountered was a lack of tools for a quick exploration of the be-
havior of the system. The execution of the specification with ISLA [Haj 88] was done manually in
a step-by-step manner. This way of proceeding is rather a heavy burden. Automatic generation of
execution paths is time consuming and the execution itself is hard to follow.

Acknowledgments

Martin Poirier helped to verify the specification and develop a version handling priorities. We are
also grateful to Jan Madey and A. John van Schouwen for helpful comments on earlier drafts of
this paper.

References

[Bol 87] Bolognesi, T., Brinksma, E., “Introduction to the ISO Specification Language LO-
TOS”, Computer Networks and ISDN systems, Vol. 14, No. 1, 1987, pp. 25-59.

[Dix 87] Dixon, R.C., “Lore of the Token Ring”, IEEE Network Magazine, vol. 1, Jan. 1987,
pp. 11-18.

[Haj 88] Haj-Hussein, M., “ISLA: An Interactive System for LOTOS Applications”, M.Sc
thesis, University of Ottawa, 1988.

[IEEE 85] IEEE Standards for Local Area Networks: Token Ring Access Method and Physical
Layer Specifications, ANSI/IEEE Std 802.5, New York, The Institute of Electrical
and Electronics Engineering Inc., April 1985.

[ISO 87] International Organization for Standardization, Information Processing Systems,
Open Systems Interconnection, LOTOS - A Formal Description Technique Based on
Observable Behavior (ISO IS 8807), 1987.

[Log 88] Logrippo, L., Obaid, A., Fehri, M., Briand, J.P., “LOTOS: An Executable Specifica-
tion Language for Distributed Systems”, Software - Practice and Experience, Vol.
122, No. 4, 1988, pp. 365-385.

[Sco 89] Scollo, G., “Formal Description of the OSI Session Layer: Transport Service”, The
Formal Description Technique LOTOS, North-Holland, 1989, pp. 97-116.

 16

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

Appendix 1

Specification of a Subset of the IEEE 802.5 Standard of Token Ring in LOTOS

1 (***)
2 (* Subset of the IEEE Standard 802.5 of TokenRing *)
3 (***)
4
5 specification TokenRingProtocol[lsap0,lsap1,lsap2]: noexit
6
7 library
8 Bit,Octet,OctetString,Boolean,NaturalNumber
9 endlib
10
11 type DataType is Octet,OctetString
12 opns
13 idle,
14 sd, (* starting delimiter *)
15 ed: -> Octet (* ending delimiter *)
16
17 fcs: -> OctetString
18
19 is_set_bit_A,
20 is_set_bit_C,
21 is_set_bit_T: Octet -> Bool
22
23 setBit_T,
24 setBit_A,
25 setBits_AC: Octet -> Octet
26
27 first: OctetString -> Octet
28 tail: OctetString -> OctetString
29 eqns
30 forall X: Octet,
31 b1,b2,b3,b4,b5,b6,b7,b8: Bit,
32 S: OctetString
33 ofsort Octet
34 idle = Octet(0,0,0,0,0,0,0,0);
35 sd = Octet(1,1,0,1,1,0,0,0);
36 ed = Octet(1,1,1,1,1,1,0,0);
37
38 setBit_T(Octet(b1,b2,b3,b4,b5,b6,b7,b8)) = Octet(b1,b2,b3,1,b5,b6,b7,b8);
39 setBit_A(Octet(b1,b2,b3,b4,b5,b6,b7,b8)) = Octet(1,b2,b3,b4,1,b6,b7,b8);
40 setBits_AC(Octet(b1,b2,b3,b4,b5,b6,b7,b8)) = Octet(1,1,b3,b4,1,1,b7,b8);
41 first(X + S) = X
42 ofsort Bool
43 is_set_bit_T(X) = Bit4(X) eq 1 of Bit;
44 is_set_bit_A(X) = Bit1(X) eq 1 of Bit;
45 is_set_bit_C(X) = Bit2(X) eq 1 of Bit
46 ofsort OctetString
47 fcs = Octet(0,0,0,0,0,0,0,0) + <>;
48 tail(X + S) = S
49 endtype
50
51 type StationIdType is Octet
52 opns

 17

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

53 station_1,
54 station_2,
55 station_3:-> Octet
56 next : Octet-> Octet
57 eqns
58 forall X : Octet
59 ofsort Octet
60 station_1 = Octet(0,0,0,0,0,0,0,1);
61 station_2 = Octet(0,0,0,0,0,0,1,0);
62 station_3 = Octet(0,0,0,0,0,0,1,1);
63 X eq station_1 => next(X) = station_2;
64 X eq station_2 => next(X) = station_3;
65 X eq station_3 => next(X) = station_1;
66 endtype
67
68 type NaturalNumberPlus is NaturalNumber
69 opns
70 userDataLength,
71 fcsLength: -> Nat
72 dec : Nat-> Nat
73 eqns
74 forall X : Nat
75 ofsort Nat
76 userDataLength = Succ(0);
77 fcsLength = Succ(0);
78
79 dec(Succ(X)) = X
80 endtype
81
82 type TwoValuesEnum is Boolean
83 sorts Values
84 opns
85 val1,val2: -> Values
86 _eq_: Values,Values -> Bool
87 eqns
88 forall X: Values
89 ofsort Bool
90 X eq X = true
91 endtype
92
93 type ConnectionType is
94 sorts Connection
95 opns
96 req,ind,conf: -> Connection
97 endtype
98
99 behaviour
100 hide medium in
101 (InitRing[medium]
102 >>
103 (Station[lsap0,medium](station_1)
104 |||
105 Station[lsap1,medium](station_2)
106 |||
107 Station[lsap2,medium](station_3)
108)

 18

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

109)
110 |[medium]|
111 (Medium[medium](station_1)
112 |||
113 Medium[medium](station_2)
114 |||
115 Medium[medium](station_3)
116)
117
118 where
119 process InitRing [medium] : exit :=
120 medium!req!station_1!idle;
121 medium!req!station_2!idle;
122 medium!req!station_3!idle;
123 exit
124 endproc
125
126 process Station[lsap,medium] (Node :Octet) : noexit :=
127 hide msap,psap in
128 (LLC[lsap,msap] (Node)
129 |[msap]|
130 MAC[msap,psap] (Node)
131 |[psap]|
132 PhyLayer[psap,medium] (Node)
133)
134
135 where
136 type RIUstateType is TwoValuesEnum renamedby
137 sortnames RIUstate for Values
138 opnnames
139 repeat for val1
140 transmit for val2
141 endtype
142
143 (***)
144 (* Logical Link Control *)
145 (***)
146 (* - connectivity: one station per node *)
147 (* - queue: one frame *)
148 (* - service: acknowledged connectionless (Type 3) *)
149 (***)
150 process LLC [lsap,msap] (Node :Octet) : noexit :=
151 Receive [lsap,msap]
152 |||
153 Send [lsap,msap]
154
155 where
156 process Receive [lsap,msap] : noexit :=
157 i;Receive [lsap,msap] (* simulating a “buffer full” condition *)
158 []
159 msap!ind?Source:Octet?Data:OctetString;
160 lsap!ind!Source!Data;
161 Receive [lsap,msap]
162 endproc (* Receive *)
163
164 process Send [lsap,msap] : noexit :=

 19

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

165 lsap!req?Dest:Octet?Data:OctetString; (* “Data” must be different from “sd” *)
166 RequestToSend [msap] (Dest,Data) (* and “ed” constants to avoid conflicts *)
167 >>
168 Send [lsap,msap]
169
170 where
171 process RequestToSend [msap] (Dest:Octet,Data:OctetString) : exit :=
172 msap!req!Dest!Data;
173 msap!conf?FS:Octet;
174 ([is_set_bit_A(FS) and is_set_bit_C(FS)]->
175 exit (* frame received and copied *)
176 []
177 [is_set_bit_A(FS) or not(is_set_bit_C(FS))]->
178 RequestToSend [msap] (Dest,Data) (* frame not copied *)
179 []
180 [not(is_set_bit_A(FS))]->
181 exit (* unknown address *)
182)
183 endproc (* RequestToSend *)
184 endproc (* Send *)
185 endproc (* LLC *)
186
187 (***)
188 (* Medium Access Control *)
189 (** *)
190 (* Frame Sequencing : none *)
191 (* Reservation : not used *)
192 (* Frame Check Sequence : not used *)
193 (* Monitor service : puts the token on the ring at the beginning *)
194 (* Error Recovery : not used *)
195 (***)
196 process MAC [msap,psap] (Node:Octet) : noexit :=
197 Monitor[psap](Node)
198 >>
199 Manager[msap,psap](Node)
200
201 where
202 (**)
203 (* Monitor *)
204 (**)
205 (* puts initially the token on the ring *)
206 (**)
207 process Monitor[psap](Node:Octet) : exit :=
208 [Node eq station_1] ->
209 (* the station station_1 puts the token on the ring *)
210 psap!ind!transmit?OctetRing:Octet;
211 psap!req!sd;
212 psap!conf;
213 psap!ind!transmit?OctetRing:Octet;
214 psap!req!Octet(0,0,0,0,0,0,0,0); (* AC: Token Bit = 0 *)
215 psap!conf;
216 psap!ind!transmit?OctetRing:Octet;
217 psap!req!ed;
218 psap!conf;
219 exit
220 []

 20

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

221 [Node ne station_1] ->
222 exit
223 endproc (* Monitor *)
224
225 (**)
226 (* Manager *)
227 (**)
228 (* sends and receives frames *)
229 (**)
230 process Manager[msap,psap](Node:Octet) : noexit :=
231 (psap!ind!repeat?Data:Octet[Data eq sd];
232 (psap!ind!transmit?AC:Octet[not(is_set_bit_T(AC))];
233 ((exit(nothingToSend,Octet(0,0,0,0,0,0,0,0),
234 Octet(Octet(0,0,0,0,0,0,0,0)))
235 [>
236 msap!req?Dest:Octet?UserData:OctetString;
237 exit(somethingToSend,Dest,UserData)
238)
239 >> accept
240 LLCreq:LLCrequest,
241 Dest:Octet,
242 UserData:OctetString
243 in
244 ([LLCreq eq nothingToSend] ->
245 psap!req!AC;
246 psap!conf;
247 exit
248 []
249 [LLCreq eq somethingToSend] ->
250 psap!req!setBit_T(AC);
251 psap!conf;
252 SendFrame [msap,psap] (Node,Dest,UserData)
253)
254)
255 []
256 psap!ind!transmit?AC:Octet[is_set_bit_T(AC)];
257 psap!req!AC;
258 psap!conf;
259 psap!ind!repeat?FC:Octet;
260 psap!ind!repeat?Dest:Octet;
261 ([Dest eq Node] ->
262 CopyFrame[msap,psap]
263 []
264 [Dest ne Node] -> exit
265)
266)
267 []
268 psap!ind!repeat?Data:Octet[Data ne sd];
269 exit
270)
271 >> Manager[msap,psap] (Node)
272
273 where
274 type LLCrequestType is TwoValuesEnum renamedby
275 sortnames LLCrequest for Values
276 opnnames

 21

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

277 nothingToSend for val1
278 somethingToSend for val2
279 endtype
280
281 (**)
282 (* CopyFrame *)
283 (**)
284 (* A frame has been recognized and is copied, while it passes through, to be *)
285 (* eventually transferred to the LLC (if there is enough place in LLC buffer) *)
286 (**)
287 process CopyFrame[msap,psap] : exit :=
288 psap!ind!repeat?Source:Octet;
289 (CopyOctets[psap] (userDataLength)
290 >> accept Data:OctetString in
291 (CopyOctets[psap] (fcsLength)
292 >> accept FCS:OctetString in
293 (psap!ind!repeat?ED:Octet;
294 psap!ind!transmit?FS:Octet;
295 ((exit(BufferFull)
296 [>
297 msap!ind!Source!Data;
298 exit(Copied)
299)
300 >> accept BState:BufferState in
301 ([BState eq BufferFull] ->
302 psap!req!setBit_A(FS);
303 psap!conf;
304 exit
305 []
306 [BState eq Copied] ->
307 psap!req!setBits_AC(FS);
308 psap!conf;
309 exit
310)
311)
312)
313)
314)
315
316 where
317 type BufferStateType is TwoValuesEnum renamedby
318 sortnames BufferState for Values
319 opnnames
320 BufferFull for val1
321 Copied for val2
322 endtype
323 endproc (* CopyFrame *)
324
325 process CopyOctets[psap] (DataLength:Nat) : exit(OctetString) :=
326 Copy[psap] (DataLength,<>)
327 >>
328 accept Data:OctetString in
329 exit(Data)
330
331 where
332 process Copy[psap] (Length:Nat,Data:OctetString) : exit(OctetString) :=

 22

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

333 [Length eq Succ(0)] ->
334 psap!ind!repeat?X:Octet;
335 exit(X + Data)
336 []
337 [Length gt Succ(0)] ->
338 psap!ind!repeat?X:Octet;
339 Copy[psap](dec(Length),X + Data)
340 endproc (* Copy *)
341 endproc (* CopyOctets *)
342
343 process SendFrame[msap,psap]
344 (Node:Octet,
345 Dest:Octet,
346 UserData:OctetString) : exit :=
347 hide sdIsBack in
348 TransmitFrame[psap,sdIsBack] (Node,Dest,UserData)
349 |[sdIsBack]|
350 RemoveFrame[msap,psap,sdIsBack]
351
352 where
353 (***)
354 (* TransmitFrame *)
355 (***)
356 process TransmitFrame[psap,sdIsBack]
357 (Node:Octet,
358 Dest:Octet,
359 UserData:OctetString) : exit :=
360 psap!req!Octet(0,0,0,0,0,0,0,0); (* FC: not used *)
361 psap!conf;
362 psap!req!Dest;
363 psap!conf;
364 psap!req!Node; (* local node *)
365 psap!conf;
366 TransmitOctets[psap](UserData,userDataLength) >>
367 TransmitOctets[psap](fcs,fcsLength) >>
368 psap!req!ed;
369 psap!conf;
370 psap!req!Octet(0,0,0,0,0,0,0,0); (* FS, bits A and C equal 0 *)
371 psap!conf;
372 WaitForSD[psap,sdIsBack] >>
373 PutToken[psap]
374
375 where
376 process TransmitOctets[psap] (Data:OctetString, Length:Nat) : exit :=
377 [Length eq Succ(0)] ->
378 psap!req!first(Data);
379 psap!conf;
380 exit
381 []
382 [Length gt Succ(0)] ->
383 psap!req!first(Data);
384 psap!conf;
385 TransmitOctets[psap](tail(Data),dec(Length))
386 endproc (* TransmitOctets *)
387
388 (**)

 23

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

389 (* WaitForSD *)
390 (**)
391 (* If a node finishes transmitting the entire frame prior to *)
392 (* receiving its own starting delimiter, it continues to *)
393 (* transmit idle characters (contiguous 0-bits) on psap until *)
394 (* the header is recognized by Remove (action sdIsBack) *)
395 (**)
396 process WaitForSD[psap,sdIsBack] : exit :=
397 (exit(sdStillComing)
398 [>
399 sdIsBack; exit(sdArrived)
400)
401 >> accept SDst:SDstate in
402 ([SDst eq sdStillComing] ->
403 psap!req!idle;
404 psap!conf;
405 WaitForSD[psap,sdIsBack]
406 []
407 [SDst eq sdArrived] ->
408 exit
409)
410
411 where
412 type SDstateType is TwoValuesEnum renamedby
413 sortnames SDstate for Values
414 opnnames
415 sdStillComing for val1
416 sdArrived for val2
417 endtype
418 endproc (* WaitForSD *)
419
420 process PutToken[psap] : exit :=
421 psap!req!sd;
422 psap!conf;
423 psap!req!Octet(0,0,0,0,0,0,0,0); (* AC: token bit = 0 *)
424 psap!conf;
425 psap!req!ed;
426 psap!conf;
427 exit
428 endproc (* PutToken *)
429 endproc (*TransmitFrame*)
430
431 (***)
432 (* RemoveFrame *)
433 (***)
434 process RemoveFrame[msap,psap,sdIsBack] : exit :=
435 psap!ind!transmit?Data:Octet[Data eq sd];
436 (sdIsBack; (* tell to TransmitFrame that it can *)
437 exit (* put back the token on the ring *)
438 |||
439 psap!ind!transmit?AC:Octet;
440 psap!ind!transmit?FC:Octet;
441 psap!ind!transmit?Dest:Octet;
442 psap!ind!transmit?Source:Octet;
443 WaitForED[msap,psap]
444)

 24

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

445 []
446 psap!ind!transmit?Data:Octet[Data ne sd];
447 RemoveFrame[msap,psap,sdIsBack]
448
449 where
450 process WaitForED[msap,psap] : exit :=
451 psap!ind!transmit?Data:Octet[Data eq ed];
452 psap!ind!transmit?FS:Octet;
453 msap!conf!FS;
454 exit
455 []
456 psap!ind!transmit?Data:Octet[Data ne ed];
457 WaitForED[msap,psap]
458 endproc (* WaitForED *)
459 endproc (* RemoveFrame *)
460 endproc (* SendFrame *)
461 endproc (* Manager *)
462 endproc (* MAC *)
463
464 (***)
465 (* Physical Layer *)
466 (***)
467 (* Depending on the mode, the Physical Layer repeats or *)
468 (* transmits an octet. *)
469 (***)
470 process PhyLayer [psap,medium] (Node :Octet) : noexit :=
471 RIU[psap,medium](Node)
472
473 where
474 (**)
475 (* RIU *)
476 (**)
477 (* Ring interfaces have two operating modes, repeat and transmit. *)
478 (* In repeat mode, the input octets are simply copied onto psap *)
479 (* and repeated on medium. *)
480 (**)
481 process RIU[psap,medium](Node: Octet) : noexit :=
482 medium!ind!Node?Data:Octet;
483 (psap!ind!repeat!Data; (* repeat state *)
484 exit(Data)
485 []
486 psap!ind!transmit!Data; (* transmit state *)
487 psap!req?Data:Octet;
488 psap!conf;
489 exit(Data)
490) >> accept Data:Octet in
491 medium!req!next(Node)!Data;
492 RIU[psap,medium](Node)
493 endproc (* RIU *)
494 endproc (* PhyLayer *)
495 endproc (* Station *)
496
497 (***)
498 (* Medium *)
499 (***)
500 (* Connections between the RIUs *)

 25

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

501 (* Delay: one octet *)
502 (***)
503 process Medium[medium](Node:Octet) : noexit :=
504 medium!req!Node?Data:Octet;
505 medium!ind!Node!Data;
506 Medium[medium](Node)
507 endproc (* Medium *)
508
509 endspec (* TokenRingProtocol *)

 26

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

Appendix 2. A (Part of) Simulation Session Using ISLA

In this annotated script the actions that were chosen are indicated by *. Annotations are related to
the chosen actions. The notation bh[i] refers to the behavior given in the i-th line of the specifica-
tion text.

1. Station_1 gets the token first
===
Level/28

<3>- i (specified explicitly) ---> bh3 [157]
* <4>- lsap !req:Connection ?Dest:Octet ?Data:OctetString ---> bh4 [165]

<5>- i (hiding: psap !ind !transmit:RIUstate !Octet(0,0,0,0,0,0,0,0):Octet
[not(is_set_bit_T(Octet(0,0,0,0,0,0,0,0)))]) ---> bh5 [232,486]

(* tell LLC that there is something to send *)
 Passed evaluated value ==> req
 Enter a value for Dest:Octet => station_2
 Enter a value for Data:OctetString => Octet(Octet(1,1,1,1,1,1,1,1))
===
Level/29

<3>- i (specified explicitly) ---> bh3 [157]
* <4>- i (hiding: psap !ind !transmit:RIUstate !Octet(0,0,0,0,0,0,0,0):Octet

[not(is_set_bit_T(Octet(0,0,0,0,0,0,0,0)))]) ---> bh4 [232,486]
(* token is coming *)

===
Level/30

<3>- i (specified explicitly) ---> bh3 [157]
<4>- i (hiding: psap !req !Octet(0,0,0,0,0,0,0,0):Octet) ---> bh4 [245,487]

* <5>- i (hiding: msap !req:Connection !Octet(0,0,0,0,0,0,1,0):Octet !Octet(1,1,1,1,1,1,1,1)+ <>:OctetString)
 ---> bh5 [172,236]

(* MAC has something to send. Actions at <4> and <5> are exclusive *)
===
Level/31

<3>- i (specified explicitly) ---> bh3 [157]
* <4>- i (hiding: psap !req !Octet(0,0,0,1,0,0,0,0):Octet) ---> bh4 [250,487]

(* Set bit T to 1 to indicate the beginning of a frame *)

2. Entering Transmit Mode
===
Level/6

<1>- i (specified explicitly) ---> bh1 [157]
<2>- lsap !req:Connection ?Dest:Octet ?Data:OctetString ---> bh2 [165]

* <3>- i (hiding: psap !ind !transmit:RIUstate !Octet(0,0,0,0,0,0,0,0):Octet) ---> bh3 [210,486]
(* Octet sent up to MAC *)

===
Level/7

<1>- i (specified explicitly) ---> bh1 [157]

 27

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

<2>- lsap !req:Connection ?Dest:Octet ?Data:OctetString ---> bh2 [165]
* <3>- i (hiding: psap !req!Octet(1,1,0,1,1,0,0,0):Octet) ---> bh3 [211,487]

(* Transmit mode requires one octet from MAC to be sent on medium *)
===
Level/8

<1>- i (specified explicitly) ---> bh1 [157]
<2>- lsap !req:Connection ?Dest:Octet ?Data:OctetString ---> bh2 [165]

* <3>- i (hiding: psap !conf ---> bh3[212]

3. Entering Repeat Mode
===
Level/8

<3>- i (specified explicitly) ---> bh3 [157]
<4>- lsap !req:Connection ?Dest:Octet ?Data:OctetString ---> bh4 [165]

* <6>- i (hiding: psap !ind !repeat:RIUstate !Octet(0,0,0,0,0,0,0,0):Octet [ne(idle,sd)]) ---> bh6 [268,483]
(* The octet is sent up to MAC and rewritten onto medium *)

4. Release of Token
===
Level/112

<3>- i (specified explicitly) ---> bh3 [157]
* <5>- i (hiding: psap !ind !transmit:RIUstate !Octet(0,0,0,0,0,0,0,0):Octet [ne(first(fcs),ed)]) --->

bh5 [456,486]
===
Level/117

<3>- i (specified explicitly) ---> bh3 [157]
* <4>- i (hiding: psap !req !Octet(1,1,0,1,1,0,0,0):Octet) ---> bh4 [421,487]
===
Level/118

<3>- i (specified explicitly) ---> bh3 [157]
* <4>- i (hiding: psap !conf ---> bh4[422]
===
Level/129

<3>- i (specified explicitly) ---> bh3 [157]
* <4>- i (hiding: psap !ind !transmit:RIUstate !Octet(1,1,1,1,1,1,0,0):Octet [eq(ed,ed)]) ---> bh4 [451,486]
===
Level/130

<3>- i (specified explicitly) ---> bh3 [157]
* <4>- i (hiding: psap !req !Octet(0,0,0,0,0,0,0,0):Octet) ---> bh4 [423,487]
===
Level/131

<3>- i (specified explicitly) ---> bh3 [157]
* <4>- i (hiding: psap !conf ---> bh4[424]
===
Level/139

<3>- i (specified explicitly) ---> bh3 [157]

 28

Specification of the IEEE 802.5 Token Ring LAN in LOTOS

* <4>- i (hiding: psap !ind !transmit:RIUstate !Octet(1,1,0,0,1,1,0,0):Octet) ---> bh4 [442,486]
===
Level/140

<3>- i (specified explicitly) ---> bh3 [157]
* <4>- i (hiding: psap !req !Octet(1,1,1,1,1,1,0,0):Octet) ---> bh4 [425,487]
===
Level/141

<3>- i (specified explicitly) ---> bh3 [157]
* <4>- i (hiding: psap !conf ---> bh4[426]
===

5. Message Received at Gate lsap
===
Level/28

<3>- i (specified explicitly) ---> bh3 [157]
* <4>- lsap !req:Connection ?Dest:Octet ?Data:OctetString ---> bh4 [165]

<5>- i (hiding: psap !transmit:RIUstate !Octet(0,0,0,0,0,0,0,0):Octet
[not(is_set_bit_T(Octet(0,0,0,0,0,0,0,0)))]) ---> bh5 [232,486]

 Passed evaluated value ==> req
 Enter a value for Dest:Octet => station_2
 Enter a value for Data:OctetString => Octet(Octet(1,1,1,1,1,1,1,1))

(* A request to send is issued from station_1 *)

===
Level/120

<3>- i (specified explicitly) ---> bh3 [157]
* <4>- lsap !ind:Connection !Octet(0,0,0,0,0,0,0,1):Octet !Octet(1,1,1,1,1,1,1,1)+ <>:OctetString ---> bh4 [160]

(* An indication that a frame has arrived from station_1 *)

6. Communication between LLC and MAC
===
Level/30

<3>- i (specified explicitly) ---> bh3 [157]
<4>- i (hiding: psap !Octet(0,0,0,0,0,0,0,0):Octet) ---> bh4 [245,487]

* <5>- i (hiding: msap !req:Connection !Octet(0,0,0,0,0,0,1,0):Octet !Octet(1,1,1,1,1,1,1,1)+ <>:OctetString)
 ---> bh5 [172,236]

(* A request to send from LLC to MAC of station_1. Destination: station_2 *)
===
Level/119

<4>- i (specified explicitly) ---> bh4 [157]
<5>- lsap !req:Connection ?Dest:Octet ?Data:OctetString ---> bh5 [165]

* <7>- i (hiding: msap !ind:Connection !Octet(0,0,0,0,0,0,0,1):Octet !Octet(1,1,1,1,1,1,1,1)+ <>:OctetString)
 ---> bh7 [159,297]

(* An indication on msap that frame has arrived from station_1 *)
(* Action at <7> indicates that LLC is ready to buffer octets to form a frame *)

	Specification of the IEEE 802.5 Token Ring LAN in LOTOS
	Michal IGLEWSKI Abdellatif OBAID
	Université du Québec à Hull
	Département d’informatique
	C.P. 1250, succ.”B”, Hull, Que., CANADA
	J8X 3X7
	e-mail: iglewski@qucis.queensu.ca, obaid@UQHULL.bitnet
	Abstract
	LOTOS is a specification language that was developed within the ISO as a formal description technique for protocol specification and validation. Local area networks are growing in popularity and the design of communication protocols for these network...
	1 Introduction

	LOTOS ([ISO 87], [Bol 87] and [Log 88]) is a specification language that is intended for specifying distributed systems. It allows systems to be composed of concurrently running subsystems which can communicate both synchronously and asynchronously. ...
	We do not describe LOTOS language in this paper - a good tutorial can be found e.g. in [Bol 87].
	2 Token Ring Network

	A token ring network [Dix 87] is a collection of stations serially connected by a transmission medium. Each station is identified by a unique address and knows the address of its neighbors. Information is transferred sequentially, bit by bit, from on...
	Within the IEEE standard there is also a possibility to use priorities for the ring access control. To each station is assigned a priority ranking from zero to seven, what gives a station an opportunity to reserve the use of the ring for the next tra...
	2.1 Token Ring Protocol Architecture

	The token ring protocol uses only the two lowest layers of the OSI Reference Model: the Physical layer and the Data Link layer, with the latter subdivided into Medium Access Control layer (MAC) and the Logical Link Control layer (LLC). The three laye...
	LSAP
	LLC
	MSAP
	MAC
	PSAP
	Physical
	layer
	medium
	Figure 1: Token Ring Protocol architecture
	2.1.1 LLC Layer Functions

	The LLC supports media independent data link functions, and uses the services of the MAC layer to provide services to the network layer. It provides two forms of service for transmission of data frames between two neighbor stations: unacknowledged co...
	2.1.2 MAC Layer Functions

	The MAC layer provides mechanisms to control the access to the shared medium; it is therefore a necessary part of the protocol ensuring that two stations do not send data at the same time. The MAC layer exchanges frames between data link layer entiti...
	Frame formats
	In the IEEE 802.5 standard [IEEE 85] messages are structured as frames. There are two frame formats: token frames and data frames.
	The token frame format (cf. Figure 2) consists of three fields only: the Starting Delimiter (SD), the Access Control (AC), and the Ending Delimiter (ED). The AC field contains a one-bit token indicator (T) that is set to 0 to indicate the token frame.
	Starting Access Ending
	Delimiter Control Delimiter
	(1 octet) (1 octet) (1 octet)
	T : Token bit
	P P P : Priority bits
	M : Monitor bit
	RRR : Reservation bits
	P P P T M R R R
	Figure 2: Token Frame Format
	The data frame format consists of 9 fields (cf. Figure 3). Three of them (SD, AC, ED) are the same as before, with token indicator T set to 1. The Frame Control field (FC) defines the type of frame (i.e. MAC frame or LLC frame), the address fields id...
	a) A=0, C=0: Destination not present. The station will fail to accept the frame.
	b) A=1, C=0: Destination present but frame not accepted (e.g. because there is not enough buffer space). The sending station may retry later.
	c) A=1, C=1: Destination present and frame accepted. When the frame returns back to the original sender, this combination constitutes a positive acknowledgment.
	Starting Access Frame Destination Source Information Frame-Check Ending Frame
	Delimiter Control Control Address Address Sequence Delimiter Status
	(1 octet) (1 octet) (1 octet) (2 or 6 octets) (2 or 6 octets) (0 or more oct.) (4 octets) (1 octet) (1 octet)
	Figure 3: Data Frame Format
	2.1.3 Physical Layer Functions

	The physical layer is responsible for the physical transfer of bits between stations. The interfacing between a station and the ring is done via the Ring Interface Unit (RIU) which is an active device attached to each station that has the ability to ...
	The IEEE 802.5 standard physical layer provides for detailed description of the encoding techniques that are used. Since this layer is concerned with many electrical details, it is usually not specified formally. In our specification we model the phy...
	3 Protocol Specification
	Before presenting the specification let us explain how we model the communication. As shown in Figure 1, the ring is modelled by a single gate called medium. In order to model several stations connected to the same ring, the behavior expression descr...
	As mentioned before, we assume that a byte (a value of type Octet in the specification) is the elementary unit of exchanged information. For this reason, in several parts of this specification, we analyze a frame octet by octet. This procedure allows...
	Any octet that is transmitted by the MAC layer must be confirmed by the physical layer using a constant value called conf.
	3.1 Specification of a Station
	The behavior of a station with the three layers described above is modelled by the process Station:
	process Station[lsap,medium] (Node:Octet) : noexit :=
	hide msap,psap in
	(LLC[lsap,msap] (Node)
	|[msap]|
	MAC[msap,psap] (Node)
	|[psap]|
	PhyLayer[psap,medium] (Node)
)
	endproc
	3.2 Specification of the LLC Layer
	The LLC layer is modelled by the process LLC. This process has two gates that represent the two SAPs: lsap and msap. It can send and receive data concurrently:
	process LLC [lsap,msap] (Node:Octet) : noexit :=
	Receive [lsap,msap]
	|||
	Send [lsap,msap]
	endproc
	Process Receive either receives new data from the MAC layer throughout the gate msap or refuses to receive because its buffer is full (this is modelled by the internal event i):
	process Receive [lsap,msap] : noexit :=
	i;Receive [lsap,msap] (* simulating a “buffer full” condition *)
	[]
	msap!ind?Source:Octet?Data:OctetString;
	lsap!ind!Source!Data;
	Receive [lsap,msap]
	endproc
	Sending is done by the process Send. This process receives a request from the station to send data to another station identified by Dest. Then this request is sent to MAC layer by the process RequestToSend:
	process Send [lsap,msap] : noexit :=
	lsap!req?Dest:Octet?Data:OctetString;
	RequestToSend [msap] (Dest,Data)
	>>
	Send [lsap,msap]
	endproc
	RequestToSend is the process that actually executes the request on behalf of an LLC layer entity and waits for confirmation by receiving the FS field. When this arrives, it checks the value of bits A and C of the received frame: if the bits A and C a...
	process RequestToSend [msap] (Dest:Octet,Data:OctetString) : exit :=
	msap!req!Dest!Data;
	msap!conf?FS:Octet;
	([is_set_bit_A(FS) and is_set_bit_C(FS)]->
	exit (* frame received and copied *)
	[]
	[is_set_bit_A(FS) or not(is_set_bit_C(FS))]->
	RequestToSend [msap] (Dest,Data) (* frame not copied *)
	[]
	[not(is_set_bit_A(FS))]->
	exit (* unknown address *)
)
	endproc
	3.3 Specification of the MAC Layer
	The MAC layer is modelled by the MAC process. In the specification that follows we assume that neither we have frame sequencing capability nor we perform error correction (i.e. we ignore the FCS information). The MAC process is specified as follows:
	process MAC [msap,psap] (Node:Octet) : noexit :=
	Monitor[psap](Node)
	>>
	Manager[msap,psap](Node)
	endproc
	According to the IEEE standard, one particular station should play the role of the monitor. One of the functions of the monitor is to generate the token when it is lost or damaged. We use the monitor to decide which station initially puts the token i...
	process Monitor[psap](Node:Octet) : exit :=
	[Node eq station_1] ->
	psap!ind!transmit?OctetRing:Octet;
	psap!req!sd;
	psap!conf;
	psap!ind!transmit?OctetRing:Octet;
	psap!req!Octet(0,0,0,0,0,0,0,0); (* AC: Token Bit = 0 *)
	psap!conf;
	psap!ind!transmit?OctetRing:Octet;
	psap!req!ed;
	psap!conf;
	exit
	[]
	[Node ne station_1] ->
	exit
	endproc
	Process Manager is responsible for controlling the access to the ring. It behaves differently depending on whether the station is in the repeat mode or in the transmit mode. If it is in the repeat mode and gets the token frame (with bit T = 0) from t...
	If a station is in the transmit mode and gets the AC octet, then it enters the repeat mode and continues receiving the subsequent octets until it receives the Destination Address. This field is checked by the station to see if it is the proper destin...
	In the repeat mode any received octet that is different from SD is simply passed forward as is.
	Process Manager is described as follows:
	process Manager[msap,psap](Node:Octet) : noexit :=
	(psap!ind!repeat?Data:Octet[Data eq sd];
	(psap!ind!transmit?AC:Octet[not(is_set_bit_T(AC))];
	((exit(nothingToSend,Octet(0,0,0,0,0,0,0,0),
	Octet(Octet(0,0,0,0,0,0,0,0)))
	[>
	msap!req?Dest:Octet?UserData:OctetString;
	exit(somethingToSend,Dest,UserData)
)
	>> accept
	LLCreq:LLCrequest,
	Dest:Octet,
	UserData:OctetString
	in
	([LLCreq eq nothingToSend] ->
	psap!req!AC;
	psap!conf;
	exit
	[]
	[LLCreq eq somethingToSend] ->
	psap!req!setBit_T(AC);
	psap!conf;
	SendFrame [msap,psap] (Node,Dest,UserData)
)
)
	[]
	psap!ind!transmit?AC:Octet[is_set_bit_T(AC)];
	psap!req!AC;
	psap!conf;
	psap!ind!repeat?FC:Octet;
	psap!ind!repeat?Dest:Octet;
	([Dest eq Node] ->
	CopyFrame[msap,psap]
	[]
	[Dest ne Node] -> exit
)
)
	[]
	psap!ind!repeat?Data:Octet[Data ne sd];
	exit
)
	>> Manager[msap,psap] (Node)
	endproc
	Process CopyFrame assumes that a station is in the repeat mode. Upon receiving the Source Address, this process copies the subsequent octets. The number of copied octets equals to a constant value given in UserDataLength. CopyFrame concatenates these...
	In the transmit mode either the condition BufferFull is generated or the received frame is delivered to the LLC layer through the msap gate. In the former case, the received frame is put back into the ring by setting the bit A to 1. In the latter cas...
	process CopyFrame[msap,psap] : exit :=
	psap!ind!repeat?Source:Octet;
	(CopyOctets[psap] (userDataLength)
	>> accept Data:OctetString in
	(CopyOctets[psap] (fcsLength)
	>> accept FCS:OctetString in
	(psap!ind!repeat?ED:Octet;
	psap!ind!transmit?FS:Octet;
	((exit(BufferFull)
	[>
	msap!ind!Source!Data;
	exit(Copied)
)
	>> accept BState:BufferState in
	([BState eq BufferFull] ->
	psap!req!setBit_A(FS);
	psap!conf;
	exit
	[]
	[BState eq Copied] ->
	psap!req!setBits_AC(FS);
	psap!conf;
	exit
)
)
)
)
)
	endproc
	CopyOctets is the process that forms frames out of the received octets. The number of these octets is passed as a parameter. This process is described as follows:
	process CopyOctets[psap] (DataLength:Nat) : exit(OctetString) :=
	Copy[psap] (DataLength,<>)
	>>
	accept Data:OctetString in
	exit(Data)
	where
	process Copy[psap] (Length:Nat,Data:OctetString) : exit(OctetString) :=
	[Length eq Succ(0)] ->
	psap!ind!repeat?X:Octet;
	exit(X + Data)
	[]
	[Length gt Succ(0)] ->
	psap!ind!repeat?X:Octet;
	Copy[psap](dec(Length),X + Data)
	endproc
	endproc
	Sending frames is accomplished by process SendFrame. In the transmit mode, if a station has something to send, this process sends a frame given its user data (UserData), the identity of the sending station (Node) and the identity of the destination (...
	process SendFrame[msap,psap]
	(Node:Octet, Dest:Octet, UserData:OctetString) : exit :=
	hide sdIsBack in
	TransmitFrame[psap,sdIsBack] (Node,Dest,UserData)
	|[sdIsBack]|
	RemoveFrame[msap,psap,sdIsBack]
	endproc
	TransmitFrame is the process that transmits frames octet by octet onto the ring. It also waits for confirmation after each octet it sends. After receiving the frame that it sent, it puts the token back into the ring:
	process TransmitFrame[psap,sdIsBack]
	(Node:Octet, Dest:Octet, UserData:OctetString) : exit :=
	psap!req!Octet(0,0,0,0,0,0,0,0); (* FC: not used *)
	psap!conf;
	psap!req!Dest;
	psap!conf;
	psap!req!Node; (* local node *)
	psap!conf;
	TransmitOctets[psap](UserData,userDataLength) >>
	TransmitOctets[psap](fcs,fcsLength) >>
	psap!req!ed;
	psap!conf;
	psap!req!Octet(0,0,0,0,0,0,0,0); (* FS: bits A and C equal 0 *)
	psap!conf;
	WaitForSD[psap,sdIsBack] >>
	PutToken[psap]
	endproc
	Process TransmitOctets is responsible for transmitting a number of octets given by the parameter Length. This process is called by SendFrame for sending user data as well as FCS strings. Its description is as follows:
	process TransmitOctets[psap] (Data:OctetString, Length:Nat) : exit :=
	[Length eq Succ(0)] ->
	psap!req!first(Data);
	psap!conf;
	exit
	[]
	[Length gt Succ(0)] ->
	psap!req!first(Data);
	psap!conf;
	TransmitOctets[psap](tail(Data),dec(Length))
	endproc
	Process WaitForSD models idle time for a station. If a station finishes transmitting the entire frame prior to receiving its own starting delimiter (SD), it continues to transmit idle characters (contiguous 0-bits) on the psap gate until it receives ...
	process WaitForSD[psap,sdIsBack] : exit :=
	(exit(sdStillComing)
	[>
	sdIsBack; exit(sdArrived)
)
	>> accept SDst:SDstate in
	([SDst eq sdStillComing] ->
	psap!req!idle;
	psap!conf;
	WaitForSD[psap,sdIsBack]
	[]
	[SDst eq sdArrived] ->
	exit
)
	endproc
	Process PutToken simply generates and inserts a token into the ring:
	process PutToken[psap] : exit :=
	psap!req!sd;
	psap!conf;
	psap!req!Octet(0,0,0,0,0,0,0,0); (* AC, token bit = 0 *)
	psap!conf;
	psap!req!ed;
	psap!conf;
	exit
	endproc
	By executing the action sdIsBack (after receiving the field SD of its frame), RemoveFrame causes that TransmitFrame puts the token back into the ring. At the same time this process continues to accept the rest of the frame until it receives the field ED
	process RemoveFrame[msap,psap,sdIsBack] : exit :=
	psap!ind!transmit?Data:Octet[Data eq sd];
	(sdIsBack; (* tell to TransmitFrame that it can *)
	exit (* put back the token on the ring *)
	|||
	psap!ind!transmit?AC:Octet;
	psap!ind!transmit?FC:Octet;
	psap!ind!transmit?Dest:Octet;
	psap!ind!transmit?Source:Octet;
	WaitForED[msap,psap]
)
	[]
	psap!ind!transmit?Data:Octet[Data ne sd];
	RemoveFrame[msap,psap,sdIsBack]
	endproc
	Waiting for the ED field is done by the process WaitForED:
	process WaitForED[msap,psap] : exit :=
	psap!ind!transmit?Data:Octet[Data eq ed];
	psap!ind!transmit?FS:Octet;
	msap!conf!FS;
	exit
	[]
	psap!ind!transmit?Data:Octet[Data ne ed];
	WaitForED[msap,psap]
	endproc
	3.4 Specification of the Physical Layer
	Depending on the mode, the physical layer repeats or transmits the octets it receives. In our specification this layer describes the behavior of the Ring Interface Unit (RIU). This interface communicates with the process Medium via the gate medium us...
	process PhyLayer [psap,medium] (Node:Octet) : noexit :=
	RIU[psap,medium](Node)
	endproc
	RIU is the process that models the interface between a station and the ring. In the repeat mode, the received octets are simply copied onto the gate psap. In the transmit mode, it sends each received octet and waits for confirmation. In both modes da...
	process RIU[psap,medium](Node:Octet) : noexit :=
	medium!ind!Node?Data:Octet;
	(psap!ind!repeat!Data; (* repeat state *)
	exit(Data)
	[]
	psap!ind!transmit!Data; (* transmit state *)
	psap!req?Data:Octet;
	psap!conf;
	exit(Data)
) >> accept Data:Octet in
	medium!req!next(Node)!Data;
	RIU[psap,medium](Node)
	endproc
	The process Medium is specified below. It simply represents connections between the Ring Interface Units:
	process Medium[medium](Node:Octet) : noexit :=
	medium!req!Node?Data:Octet;
	medium!ind!Node!Data;
	Medium[medium](Node)
	endproc
	3.5 Protocol Specification
	It is essential that each station knows its number, so that it can identify its downstream neighbor. We model the protocol by linking several stations to a network according to the diagram given in Figure 4.
	station4
	Figure 4: The Ring Architecture and the Token
	The overall structure of this protocol can be presented as shown below. For simplicity, we chose to model a collection of three stations only.
	hide medium in
	(InitRing[medium] >>
	(Station[lsap,medium](station_1)
	|||
	Station[lsap,medium](station_2)
	|||
	Station[lsap,medium](station_3)
))
	|[medium]|
	(Medium[medium](station_1)
	|||
	Medium[medium](station_2)
	|||
	Medium[medium](station_3)
)
	InitRing simply allows to activate each interface by sending idle octets. It behaves according to the following process:
	process InitRing [medium] : exit :=
	medium!req!station_1!idle;
	medium!req!station_2!idle;
	medium!req!station_3!idle;
	exit
	endproc
	The generalization of this scheme could also be done as follows:
	hide medium in
	(InitRing[medium] >> Stations[lsap,medium](NbOfStations))
	|[medium]|
	Media[medium](NumberOfConnections)
	where Stations is the description of several parallel instantiations of one station. Process Station can be defined as follows:
	process Stations[lsap,medium](N: Integer) : noexit :=
	[N eq 0] -> Station[lsap,medium](N)
	[]
	[N gt 0] -> (Station[lsap,medium](N)
	|||
	Stations[lsap,medium](N-1))
	endproc
	and Media could be defined in a similar way, as follows:
	process Media[medium](N: Integer) : noexit :=
	[N eq 0] -> Medium[medium](N)
	[]
	[N gt 0] -> (Medium[medium](N)
	|||
	Media[medium](N-1))
	endproc
	The text of the protocol specification is given in the Appendix 1. Data types are specified in the ACT ONE specification language that is part of LOTOS. We used the LOTOS data type library [ISO 87]. Part of an execution session script is given in the...
	4 Conclusions
	We used LOTOS to specify a simplified version of the IEEE 802.5 protocol. This language is suitable for expressing the modularity of different layers (LLC, MAC, Physical). We found out that it is also relatively easy to extend the existing specificat...
	LOTOS has other powerful constructs for specifying more complicated systems. For example, we could use the full synchronization operator, ||, in order to apply the constraint oriented style. It would allow for more constructive specification.
	However, we have noticed some shortcomings in the capabilities of the language. Consider a station that has some data to send. It must seize the token and append the data octets to the beginning of the frame. When a station does not have any data to ...
	(exit(nothingToSend,anyOctet,anyOctet)
	[>
	msap!req?Dest:Octet?UserData:Octet;
	exit(somethingToSend,Dest,UserData)
)
	>> accept Condition:ConditionType,Octet1:Octet,Octet2:Octet
	in
	([Condition eq nothingToSend] -> do_this
	[]
	[Condition eq somethingToSend] -> do_that
)
	This solution is a bit artificial. We used the disabling operator because we thought that the transmission of data could be viewed as an interruption of the token circulation. According to the semantics of the language, the behavior expressed above i...
	i; do_this [] msap!req?Dest:Octet?UserData:Octet; i; do_that
	However, this expression models a behavior with the “priority” assigned to the first condition. What we actually want to model is the possibility to have both alternatives somehow exclusive: if there is something to send then the first alternativ...
	A fundamental problem that we encountered was a lack of tools for a quick exploration of the behavior of the system. The execution of the specification with ISLA [Haj 88] was done manually in a step-by-step manner. This way of proceeding is rather a ...
	Acknowledgments
	Martin Poirier helped to verify the specification and develop a version handling priorities. We are also grateful to Jan Madey and A. John van Schouwen for helpful comments on earlier drafts of this paper.
	References
	[Bol 87] Bolognesi, T., Brinksma, E., “Introduction to the ISO Specification Language LOTOS”, Computer Networks and ISDN systems, Vol. 14, No. 1, 1987, pp. 25-59.
	[Dix 87] Dixon, R.C., “Lore of the Token Ring”, IEEE Network Magazine, vol. 1, Jan. 1987, pp. 11-18.
	[Haj 88] Haj-Hussein, M., “ISLA: An Interactive System for LOTOS Applications”, M.Sc thesis, University of Ottawa, 1988.
	[IEEE 85] IEEE Standards for Local Area Networks: Token Ring Access Method and Physical Layer Specifications, ANSI/IEEE Std 802.5, New York, The Institute of Electrical and Electronics Engineering Inc., April 1985.
	[ISO 87] International Organization for Standardization, Information Processing Systems, Open Systems Interconnection, LOTOS - A Formal Description Technique Based on Observable Behavior (ISO IS 8807), 1987.
	[Log 88] Logrippo, L., Obaid, A., Fehri, M., Briand, J.P., “LOTOS: An Executable Specification Language for Distributed Systems”, Software - Practice and Experience, Vol. 122, No. 4, 1988, pp. 365-385.
	[Sco 89] Scollo, G., “Formal Description of the OSI Session Layer: Transport Service”, The Formal Description Technique LOTOS, North-Holland, 1989, pp. 97-116.
	Appendix 1
	Specification of a Subset of the IEEE 802.5 Standard of Token Ring in LOTOS
	1 (***)
	2 (* Subset of the IEEE Standard 802.5 of TokenRing *)
	3 (***)
	4
	5 specification TokenRingProtocol[lsap0,lsap1,lsap2]: noexit
	6
	7 library
	8 Bit,Octet,OctetString,Boolean,NaturalNumber
	9 endlib
	10
	11 type DataType is Octet,OctetString
	12 opns
	13 idle,
	14 sd, (* starting delimiter *)
	15 ed: -> Octet (* ending delimiter *)
	16
	17 fcs: -> OctetString
	18
	19 is_set_bit_A,
	20 is_set_bit_C,
	21 is_set_bit_T: Octet -> Bool
	22
	23 setBit_T,
	24 setBit_A,
	25 setBits_AC: Octet -> Octet
	26
	27 first: OctetString -> Octet
	28 tail: OctetString -> OctetString
	29 eqns
	30 forall X: Octet,
	31 b1,b2,b3,b4,b5,b6,b7,b8: Bit,
	32 S: OctetString
	33 ofsort Octet
	34 idle = Octet(0,0,0,0,0,0,0,0);
	35 sd = Octet(1,1,0,1,1,0,0,0);
	36 ed = Octet(1,1,1,1,1,1,0,0);
	37
	38 setBit_T(Octet(b1,b2,b3,b4,b5,b6,b7,b8)) = Octet(b1,b2,b3,1,b5,b6,b7,b8);
	39 setBit_A(Octet(b1,b2,b3,b4,b5,b6,b7,b8)) = Octet(1,b2,b3,b4,1,b6,b7,b8);
	40 setBits_AC(Octet(b1,b2,b3,b4,b5,b6,b7,b8)) = Octet(1,1,b3,b4,1,1,b7,b8);
	41 first(X + S) = X
	42 ofsort Bool
	43 is_set_bit_T(X) = Bit4(X) eq 1 of Bit;
	44 is_set_bit_A(X) = Bit1(X) eq 1 of Bit;
	45 is_set_bit_C(X) = Bit2(X) eq 1 of Bit
	46 ofsort OctetString
	47 fcs = Octet(0,0,0,0,0,0,0,0) + <>;
	48 tail(X + S) = S
	49 endtype
	50
	51 type StationIdType is Octet
	52 opns
	53 station_1,
	54 station_2,
	55 station_3: -> Octet
	56 next : Octet -> Octet
	57 eqns
	58 forall X : Octet
	59 ofsort Octet
	60 station_1 = Octet(0,0,0,0,0,0,0,1);
	61 station_2 = Octet(0,0,0,0,0,0,1,0);
	62 station_3 = Octet(0,0,0,0,0,0,1,1);
	63 X eq station_1 => next(X) = station_2;
	64 X eq station_2 => next(X) = station_3;
	65 X eq station_3 => next(X) = station_1;
	66 endtype
	67
	68 type NaturalNumberPlus is NaturalNumber
	69 opns
	70 userDataLength,
	71 fcsLength : -> Nat
	72 dec : Nat -> Nat
	73 eqns
	74 forall X : Nat
	75 ofsort Nat
	76 userDataLength = Succ(0);
	77 fcsLength = Succ(0);
	78
	79 dec(Succ(X)) = X
	80 endtype
	81
	82 type TwoValuesEnum is Boolean
	83 sorts Values
	84 opns
	85 val1,val2: -> Values
	86 _eq_: Values,Values -> Bool
	87 eqns
	88 forall X: Values
	89 ofsort Bool
	90 X eq X = true
	91 endtype
	92
	93 type ConnectionType is
	94 sorts Connection
	95 opns
	96 req,ind,conf: -> Connection
	97 endtype
	98
	99 behaviour
	100 hide medium in
	101 (InitRing[medium]
	102 >>
	103 (Station[lsap0,medium](station_1)
	104 |||
	105 Station[lsap1,medium](station_2)
	106 |||
	107 Station[lsap2,medium](station_3)
	108)
	109)
	110 |[medium]|
	111 (Medium[medium](station_1)
	112 |||
	113 Medium[medium](station_2)
	114 |||
	115 Medium[medium](station_3)
	116)
	117
	118 where
	119 process InitRing [medium] : exit :=
	120 medium!req!station_1!idle;
	121 medium!req!station_2!idle;
	122 medium!req!station_3!idle;
	123 exit
	124 endproc
	125
	126 process Station[lsap,medium] (Node :Octet) : noexit :=
	127 hide msap,psap in
	128 (LLC[lsap,msap] (Node)
	129 |[msap]|
	130 MAC[msap,psap] (Node)
	131 |[psap]|
	132 PhyLayer[psap,medium] (Node)
	133)
	134
	135 where
	136 type RIUstateType is TwoValuesEnum renamedby
	137 sortnames RIUstate for Values
	138 opnnames
	139 repeat for val1
	140 transmit for val2
	141 endtype
	142
	143 (***)
	144 (* Logical Link Control *)
	145 (***)
	146 (* - connectivity : one station per node *)
	147 (* - queue : one frame *)
	148 (* - service : acknowledged connectionless (Type 3) *)
	149 (***)
	150 process LLC [lsap,msap] (Node :Octet) : noexit :=
	151 Receive [lsap,msap]
	152 |||
	153 Send [lsap,msap]
	154
	155 where
	156 process Receive [lsap,msap] : noexit :=
	157 i;Receive [lsap,msap] (* simulating a “buffer full” condition *)
	158 []
	159 msap!ind?Source:Octet?Data:OctetString;
	160 lsap!ind!Source!Data;
	161 Receive [lsap,msap]
	162 endproc (* Receive *)
	163
	164 process Send [lsap,msap] : noexit :=
	165 lsap!req?Dest:Octet?Data:OctetString; (* “Data” must be different from “sd” *)
	166 RequestToSend [msap] (Dest,Data) (* and “ed” constants to avoid conflicts *)
	167 >>
	168 Send [lsap,msap]
	169
	170 where
	171 process RequestToSend [msap] (Dest:Octet,Data:OctetString) : exit :=
	172 msap!req!Dest!Data;
	173 msap!conf?FS:Octet;
	174 ([is_set_bit_A(FS) and is_set_bit_C(FS)]->
	175 exit (* frame received and copied *)
	176 []
	177 [is_set_bit_A(FS) or not(is_set_bit_C(FS))]->
	178 RequestToSend [msap] (Dest,Data) (* frame not copied *)
	179 []
	180 [not(is_set_bit_A(FS))]->
	181 exit (* unknown address *)
	182)
	183 endproc (* RequestToSend *)
	184 endproc (* Send *)
	185 endproc (* LLC *)
	186
	187 (***)
	188 (* Medium Access Control *)
	189 (** *)
	190 (* Frame Sequencing : none *)
	191 (* Reservation : not used *)
	192 (* Frame Check Sequence : not used *)
	193 (* Monitor service : puts the token on the ring at the beginning *)
	194 (* Error Recovery : not used *)
	195 (***)
	196 process MAC [msap,psap] (Node:Octet) : noexit :=
	197 Monitor[psap](Node)
	198 >>
	199 Manager[msap,psap](Node)
	200
	201 where
	202 (**)
	203 (* Monitor *)
	204 (**)
	205 (* puts initially the token on the ring *)
	206 (**)
	207 process Monitor[psap](Node:Octet) : exit :=
	208 [Node eq station_1] ->
	209 (* the station station_1 puts the token on the ring *)
	210 psap!ind!transmit?OctetRing:Octet;
	211 psap!req!sd;
	212 psap!conf;
	213 psap!ind!transmit?OctetRing:Octet;
	214 psap!req!Octet(0,0,0,0,0,0,0,0); (* AC: Token Bit = 0 *)
	215 psap!conf;
	216 psap!ind!transmit?OctetRing:Octet;
	217 psap!req!ed;
	218 psap!conf;
	219 exit
	220 []
	221 [Node ne station_1] ->
	222 exit
	223 endproc (* Monitor *)
	224
	225 (**)
	226 (* Manager *)
	227 (**)
	228 (* sends and receives frames *)
	229 (**)
	230 process Manager[msap,psap](Node:Octet) : noexit :=
	231 (psap!ind!repeat?Data:Octet[Data eq sd];
	232 (psap!ind!transmit?AC:Octet[not(is_set_bit_T(AC))];
	233 ((exit(nothingToSend,Octet(0,0,0,0,0,0,0,0),
	234 Octet(Octet(0,0,0,0,0,0,0,0)))
	235 [>
	236 msap!req?Dest:Octet?UserData:OctetString;
	237 exit(somethingToSend,Dest,UserData)
	238)
	239 >> accept
	240 LLCreq:LLCrequest,
	241 Dest:Octet,
	242 UserData:OctetString
	243 in
	244 ([LLCreq eq nothingToSend] ->
	245 psap!req!AC;
	246 psap!conf;
	247 exit
	248 []
	249 [LLCreq eq somethingToSend] ->
	250 psap!req!setBit_T(AC);
	251 psap!conf;
	252 SendFrame [msap,psap] (Node,Dest,UserData)
	253)
	254)
	255 []
	256 psap!ind!transmit?AC:Octet[is_set_bit_T(AC)];
	257 psap!req!AC;
	258 psap!conf;
	259 psap!ind!repeat?FC:Octet;
	260 psap!ind!repeat?Dest:Octet;
	261 ([Dest eq Node] ->
	262 CopyFrame[msap,psap]
	263 []
	264 [Dest ne Node] -> exit
	265)
	266)
	267 []
	268 psap!ind!repeat?Data:Octet[Data ne sd];
	269 exit
	270)
	271 >> Manager[msap,psap] (Node)
	272
	273 where
	274 type LLCrequestType is TwoValuesEnum renamedby
	275 sortnames LLCrequest for Values
	276 opnnames
	277 nothingToSend for val1
	278 somethingToSend for val2
	279 endtype
	280
	281 (**)
	282 (* CopyFrame *)
	283 (**)
	284 (* A frame has been recognized and is copied, while it passes through, to be *)
	285 (* eventually transferred to the LLC (if there is enough place in LLC buffer) *)
	286 (**)
	287 process CopyFrame[msap,psap] : exit :=
	288 psap!ind!repeat?Source:Octet;
	289 (CopyOctets[psap] (userDataLength)
	290 >> accept Data:OctetString in
	291 (CopyOctets[psap] (fcsLength)
	292 >> accept FCS:OctetString in
	293 (psap!ind!repeat?ED:Octet;
	294 psap!ind!transmit?FS:Octet;
	295 ((exit(BufferFull)
	296 [>
	297 msap!ind!Source!Data;
	298 exit(Copied)
	299)
	300 >> accept BState:BufferState in
	301 ([BState eq BufferFull] ->
	302 psap!req!setBit_A(FS);
	303 psap!conf;
	304 exit
	305 []
	306 [BState eq Copied] ->
	307 psap!req!setBits_AC(FS);
	308 psap!conf;
	309 exit
	310)
	311)
	312)
	313)
	314)
	315
	316 where
	317 type BufferStateType is TwoValuesEnum renamedby
	318 sortnames BufferState for Values
	319 opnnames
	320 BufferFull for val1
	321 Copied for val2
	322 endtype
	323 endproc (* CopyFrame *)
	324
	325 process CopyOctets[psap] (DataLength:Nat) : exit(OctetString) :=
	326 Copy[psap] (DataLength,<>)
	327 >>
	328 accept Data:OctetString in
	329 exit(Data)
	330
	331 where
	332 process Copy[psap] (Length:Nat,Data:OctetString) : exit(OctetString) :=
	333 [Length eq Succ(0)] ->
	334 psap!ind!repeat?X:Octet;
	335 exit(X + Data)
	336 []
	337 [Length gt Succ(0)] ->
	338 psap!ind!repeat?X:Octet;
	339 Copy[psap](dec(Length),X + Data)
	340 endproc (* Copy *)
	341 endproc (* CopyOctets *)
	342
	343 process SendFrame[msap,psap]
	344 (Node:Octet,
	345 Dest:Octet,
	346 UserData:OctetString) : exit :=
	347 hide sdIsBack in
	348 TransmitFrame[psap,sdIsBack] (Node,Dest,UserData)
	349 |[sdIsBack]|
	350 RemoveFrame[msap,psap,sdIsBack]
	351
	352 where
	353 (***)
	354 (* TransmitFrame *)
	355 (***)
	356 process TransmitFrame[psap,sdIsBack]
	357 (Node:Octet,
	358 Dest:Octet,
	359 UserData:OctetString) : exit :=
	360 psap!req!Octet(0,0,0,0,0,0,0,0); (* FC: not used *)
	361 psap!conf;
	362 psap!req!Dest;
	363 psap!conf;
	364 psap!req!Node; (* local node *)
	365 psap!conf;
	366 TransmitOctets[psap](UserData,userDataLength) >>
	367 TransmitOctets[psap](fcs,fcsLength) >>
	368 psap!req!ed;
	369 psap!conf;
	370 psap!req!Octet(0,0,0,0,0,0,0,0); (* FS, bits A and C equal 0 *)
	371 psap!conf;
	372 WaitForSD[psap,sdIsBack] >>
	373 PutToken[psap]
	374
	375 where
	376 process TransmitOctets[psap] (Data:OctetString, Length:Nat) : exit :=
	377 [Length eq Succ(0)] ->
	378 psap!req!first(Data);
	379 psap!conf;
	380 exit
	381 []
	382 [Length gt Succ(0)] ->
	383 psap!req!first(Data);
	384 psap!conf;
	385 TransmitOctets[psap](tail(Data),dec(Length))
	386 endproc (* TransmitOctets *)
	387
	388 (**)
	389 (* WaitForSD *)
	390 (**)
	391 (* If a node finishes transmitting the entire frame prior to *)
	392 (* receiving its own starting delimiter, it continues to *)
	393 (* transmit idle characters (contiguous 0-bits) on psap until *)
	394 (* the header is recognized by Remove (action sdIsBack) *)
	395 (**)
	396 process WaitForSD[psap,sdIsBack] : exit :=
	397 (exit(sdStillComing)
	398 [>
	399 sdIsBack; exit(sdArrived)
	400)
	401 >> accept SDst:SDstate in
	402 ([SDst eq sdStillComing] ->
	403 psap!req!idle;
	404 psap!conf;
	405 WaitForSD[psap,sdIsBack]
	406 []
	407 [SDst eq sdArrived] ->
	408 exit
	409)
	410
	411 where
	412 type SDstateType is TwoValuesEnum renamedby
	413 sortnames SDstate for Values
	414 opnnames
	415 sdStillComing for val1
	416 sdArrived for val2
	417 endtype
	418 endproc (* WaitForSD *)
	419
	420 process PutToken[psap] : exit :=
	421 psap!req!sd;
	422 psap!conf;
	423 psap!req!Octet(0,0,0,0,0,0,0,0); (* AC: token bit = 0 *)
	424 psap!conf;
	425 psap!req!ed;
	426 psap!conf;
	427 exit
	428 endproc (* PutToken *)
	429 endproc (*TransmitFrame*)
	430
	431 (***)
	432 (* RemoveFrame *)
	433 (***)
	434 process RemoveFrame[msap,psap,sdIsBack] : exit :=
	435 psap!ind!transmit?Data:Octet[Data eq sd];
	436 (sdIsBack; (* tell to TransmitFrame that it can *)
	437 exit (* put back the token on the ring *)
	438 |||
	439 psap!ind!transmit?AC:Octet;
	440 psap!ind!transmit?FC:Octet;
	441 psap!ind!transmit?Dest:Octet;
	442 psap!ind!transmit?Source:Octet;
	443 WaitForED[msap,psap]
	444)
	445 []
	446 psap!ind!transmit?Data:Octet[Data ne sd];
	447 RemoveFrame[msap,psap,sdIsBack]
	448
	449 where
	450 process WaitForED[msap,psap] : exit :=
	451 psap!ind!transmit?Data:Octet[Data eq ed];
	452 psap!ind!transmit?FS:Octet;
	453 msap!conf!FS;
	454 exit
	455 []
	456 psap!ind!transmit?Data:Octet[Data ne ed];
	457 WaitForED[msap,psap]
	458 endproc (* WaitForED *)
	459 endproc (* RemoveFrame *)
	460 endproc (* SendFrame *)
	461 endproc (* Manager *)
	462 endproc (* MAC *)
	463
	464 (***)
	465 (* Physical Layer *)
	466 (***)
	467 (* Depending on the mode, the Physical Layer repeats or *)
	468 (* transmits an octet. *)
	469 (***)
	470 process PhyLayer [psap,medium] (Node :Octet) : noexit :=
	471 RIU[psap,medium](Node)
	472
	473 where
	474 (**)
	475 (* RIU *)
	476 (**)
	477 (* Ring interfaces have two operating modes, repeat and transmit . *)
	478 (* In repeat mode, the input octets are simply copied onto psap *)
	479 (* and repeated on medium. *)
	480 (**)
	481 process RIU[psap,medium](Node: Octet) : noexit :=
	482 medium!ind!Node?Data:Octet;
	483 (psap!ind!repeat!Data; (* repeat state *)
	484 exit(Data)
	485 []
	486 psap!ind!transmit!Data; (* transmit state *)
	487 psap!req?Data:Octet;
	488 psap!conf;
	489 exit(Data)
	490) >> accept Data:Octet in
	491 medium!req!next(Node)!Data;
	492 RIU[psap,medium](Node)
	493 endproc (* RIU *)
	494 endproc (* PhyLayer *)
	495 endproc (* Station *)
	496
	497 (***)
	498 (* Medium *)
	499 (***)
	500 (* Connections between the RIUs *)
	501 (* Delay: one octet *)
	502 (***)
	503 process Medium[medium](Node:Octet) : noexit :=
	504 medium!req!Node?Data:Octet;
	505 medium!ind!Node!Data;
	506 Medium[medium](Node)
	507 endproc (* Medium *)
	508
	509 endspec (* TokenRingProtocol *)
	Appendix 2. A (Part of) Simulation Session Using ISLA
	In this annotated script the actions that were chosen are indicated by *. Annotations are related to the chosen actions. The notation bh[i] refers to the behavior given in the i-th line of the specification text.
	1. Station_1 gets the token first
	===
	Level/28
	<3>- i (specified explicitly) ---> bh3 [157]
	* <4>- lsap !req:Connection ?Dest:Octet ?Data:OctetString ---> bh4 [165]
	<5>- i (hiding: psap !ind !transmit:RIUstate !Octet(0,0,0,0,0,0,0,0):Octet
	[not(is_set_bit_T(Octet(0,0,0,0,0,0,0,0)))]) ---> bh5 [232,486]
	Passed evaluated value ==> req
	Enter a value for Dest:Octet => station_2
	Enter a value for Data:OctetString => Octet(Octet(1,1,1,1,1,1,1,1))
	===
	Level/29
	<3>- i (specified explicitly) ---> bh3 [157]
	* <4>- i (hiding: psap !ind !transmit:RIUstate !Octet(0,0,0,0,0,0,0,0):Octet
	[not(is_set_bit_T(Octet(0,0,0,0,0,0,0,0)))]) ---> bh4 [232,486]
	===
	Level/30
	<3>- i (specified explicitly) ---> bh3 [157]
	<4>- i (hiding: psap !req !Octet(0,0,0,0,0,0,0,0):Octet) ---> bh4 [245,487]
	* <5>- i (hiding: msap !req:Connection !Octet(0,0,0,0,0,0,1,0):Octet !Octet(1,1,1,1,1,1,1,1)+ <>:OctetString)
	---> bh5 [172,236]
	===
	Level/31
	<3>- i (specified explicitly) ---> bh3 [157]
	* <4>- i (hiding: psap !req !Octet(0,0,0,1,0,0,0,0):Octet) ---> bh4 [250,487]
	2. Entering Transmit Mode
	===
	Level/6
	<1>- i (specified explicitly) ---> bh1 [157]
	<2>- lsap !req:Connection ?Dest:Octet ?Data:OctetString ---> bh2 [165]
	* <3>- i (hiding: psap !ind !transmit:RIUstate !Octet(0,0,0,0,0,0,0,0):Octet) ---> bh3 [210,486]
	===
	Level/7
	<1>- i (specified explicitly) ---> bh1 [157]
	<2>- lsap !req:Connection ?Dest:Octet ?Data:OctetString ---> bh2 [165]
	* <3>- i (hiding: psap !req!Octet(1,1,0,1,1,0,0,0):Octet) ---> bh3 [211,487]
	(* Transmit mode requires one octet from MAC to be sent on medium *)
	===
	Level/8
	<1>- i (specified explicitly) ---> bh1 [157]
	<2>- lsap !req:Connection ?Dest:Octet ?Data:OctetString ---> bh2 [165]
	* <3>- i (hiding: psap !conf ---> bh3[212]
	3. Entering Repeat Mode
	===
	Level/8
	<3>- i (specified explicitly) ---> bh3 [157]
	<4>- lsap !req:Connection ?Dest:Octet ?Data:OctetString ---> bh4 [165]
	* <6>- i (hiding: psap !ind !repeat:RIUstate !Octet(0,0,0,0,0,0,0,0):Octet [ne(idle,sd)]) ---> bh6 [268,483]
	4. Release of Token
	===
	Level/112
	<3>- i (specified explicitly) ---> bh3 [157]
	* <5>- i (hiding: psap !ind !transmit:RIUstate !Octet(0,0,0,0,0,0,0,0):Octet [ne(first(fcs),ed)]) --->
	bh5 [456,486]
	===
	Level/117
	<3>- i (specified explicitly) ---> bh3 [157]
	* <4>- i (hiding: psap !req !Octet(1,1,0,1,1,0,0,0):Octet) ---> bh4 [421,487]
	===
	Level/118
	<3>- i (specified explicitly) ---> bh3 [157]
	* <4>- i (hiding: psap !conf ---> bh4[422]
	===
	Level/129
	<3>- i (specified explicitly) ---> bh3 [157]
	* <4>- i (hiding: psap !ind !transmit:RIUstate !Octet(1,1,1,1,1,1,0,0):Octet [eq(ed,ed)]) ---> bh4 [451,486]
	===
	Level/130
	<3>- i (specified explicitly) ---> bh3 [157]
	* <4>- i (hiding: psap !req !Octet(0,0,0,0,0,0,0,0):Octet) ---> bh4 [423,487]
	===
	Level/131
	<3>- i (specified explicitly) ---> bh3 [157]
	* <4>- i (hiding: psap !conf ---> bh4[424]
	===
	Level/139
	<3>- i (specified explicitly) ---> bh3 [157]
	* <4>- i (hiding: psap !ind !transmit:RIUstate !Octet(1,1,0,0,1,1,0,0):Octet) ---> bh4 [442,486]
	===
	Level/140
	<3>- i (specified explicitly) ---> bh3 [157]
	* <4>- i (hiding: psap !req !Octet(1,1,1,1,1,1,0,0):Octet) ---> bh4 [425,487]
	===
	Level/141
	<3>- i (specified explicitly) ---> bh3 [157]
	* <4>- i (hiding: psap !conf ---> bh4[426]
	===
	5. Message Received at Gate lsap
	===
	Level/28
	<3>- i (specified explicitly) ---> bh3 [157]
	* <4>- lsap !req:Connection ?Dest:Octet ?Data:OctetString ---> bh4 [165]
	<5>- i (hiding: psap !transmit:RIUstate !Octet(0,0,0,0,0,0,0,0):Octet
	[not(is_set_bit_T(Octet(0,0,0,0,0,0,0,0)))]) ---> bh5 [232,486]
	Passed evaluated value ==> req
	Enter a value for Dest:Octet => station_2
	Enter a value for Data:OctetString => Octet(Octet(1,1,1,1,1,1,1,1))
	===
	Level/120
	<3>- i (specified explicitly) ---> bh3 [157]
	* <4>- lsap !ind:Connection !Octet(0,0,0,0,0,0,0,1):Octet !Octet(1,1,1,1,1,1,1,1)+ <>:OctetString ---> bh4 [160]
	6. Communication between LLC and MAC
	===
	Level/30
	<3>- i (specified explicitly) ---> bh3 [157]
	<4>- i (hiding: psap !Octet(0,0,0,0,0,0,0,0):Octet) ---> bh4 [245,487]
	* <5>- i (hiding: msap !req:Connection !Octet(0,0,0,0,0,0,1,0):Octet !Octet(1,1,1,1,1,1,1,1)+ <>:OctetString)
	---> bh5 [172,236]
	===
	Level/119
	<4>- i (specified explicitly) ---> bh4 [157]
	<5>- lsap !req:Connection ?Dest:Octet ?Data:OctetString ---> bh5 [165]
	* <7>- i (hiding: msap !ind:Connection !Octet(0,0,0,0,0,0,0,1):Octet !Octet(1,1,1,1,1,1,1,1)+ <>:OctetString)
	---> bh7 [159,297]

