
1/8

On Fundamentals of the Trace Assertion Method

Michal Iglewskia, Jan Madeyb, Krzysztof Stencelb

a. Département d’informatique, Université du Québec à Hull, Hull, Québec, Canada J8X 3X7
Email: iglewski@uqah.uquebec.ca    Tel: (819) 773 1602 Fax: (819) 773 1638

b. Institute of Informatics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland
Email: madey@mimuw.edu.pl, stencel@mimuw.edu.pl   Tel: (48-2) 658 3165   Fax: (48-2) 658 3164

ABSTRACT

This paper is a step towards a formal description of the current version of the trace assertion method of
module interface specification. We discuss some fundamental concepts and present a model for trace
specifications together with an argument in favor of the expressiveness of the method. In particular, we
explicitly distinguish two equivalence relations on the set of traces: one based on the observable fea-
tures of an object, the other, defined by a trace specification of this object.

1  Introduction
Well designed software should be structured into modules according to the “information hiding” principle [11].

The trace assertion method (in short: TAM) [1, 15, 7] is a formal method for the abstract specification of interfaces of
such modules. A module implements a number of homogenous, independent objects. A trace specification is a
“black-box” specification, i.e., it describes only those features of an object that are externally observable and hides
details of its internal structure. The method was first formulated in [1], and subsequently investigated by many re-
searchers (cf. e.g. [9, 4]). A revised version of TAM was presented in [15]. Since then, the method has undergone
many modifications [3, 7, 2, 16], yet there is no report that completely presents the syntax and semantics of the cur-
rent version of TAM. The recent Ph.D. Thesis [16] is an important step in this direction.

 The main goal of this paper is to discuss certain fundamentals of TAM and to propose a model for the method. In
Section 2 we describe a restricted version of TAM. In particular, we distinguish two equivalence relations on the set
of traces: one based on the observable features of an object, the other, defined by a given trace specification of this
object. In Section 3 we define a Mealy machine which serves as a model for trace specifications. The rationale for
some of our decisions is discussed in Section 4. Final conclusions and future plans are briefly presented in Section 5.

2  The trace assertion method

2.1  A characterization of an object
An entity is called an object iff it satisfies the following properties:

• it has states, produces outputs, can be affected by events,
• the sets of states, events, and outputs are finite,
• it is in one of its states at every instant of time,
• it may change its state only as the result of an event,
• outputs may be produced only in response to events,
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• between an event and the output which is the response to this event, no other event may occur,
• both the next state and the produced output depend exclusively on:

- the present state of this entity,
- the event affecting this entity.

Additionally, we assume that at most one event may occur at any given instant of time.

2.2  Basic concepts
We are interested in describing an object from the point of view of an external observer, who can perceive only

events affecting the object and the outputs produced in response to these events. In the remainder of Section 2 we as-
sume that the object under observation is settled.

Let E be the set of events that can affect the object and R be the set of outputs that can be produced by the object.
A trace is a finite sequence of pairs (E,O) where EE and OR. We use the following notation for traces:

E1.O1.E2.O2. .En.On

Both subsequent pairs and components of each pair are separated by a dot, “.”. The dot is also used as an operator
defined on traces. If T1 and T2 are traces then T1.T2 is a trace obtained by concatenation of T1 and T2. The empty se-
quence is called the empty trace and denoted by “_” (the underscore). Notice that the empty trace is a neutral element
of the dot operation.

Traces are intended to represent the externally visible behavior of the object. However, there exist traces that can-
not be used for this purpose. In order to partition traces according to this criterion, we define the notion of feasibility.
A trace E1.O1.E2.O2. .En.On is feasible iff for each i n output Oi may be produced by the object in re-
sponse to event Ei after sequence E1.O1.E2.O2. .Ei1.Oi1.

If T and T.S are both feasible traces, then S is called a feasible extension of T. The set of all feasible extensions of
T is called the object’s behavior after T.

Two feasible traces are observationally equivalent iff the object’s behaviors after these traces are the same. In
other words, an equivalence relation (denoted by “ ”) is defined on the set of all feasible traces, such that T1  T2 iff
T1 and T2 have the same sets of feasible extensions. This relation is called the observational equivalence relation1.

Note that if we know the relation “ ”, then the description of the object’s behavior after a feasible trace T also
specifies the object’s behavior after each trace from the equivalence class of T. This corollary is fundamental for
TAM.

2.3  A trace specification of a module
As mentioned in Section 1, a module implements homogenous2 objects and the state of each object in a module

is independent of the states of other objects in this module. In the restricted version of TAM which we are dealing
with, an event may alter only one object. Hence, we may assume without sacrificing generality, that there is only one,
generic, object in a module. 

Let us now describe how the terms introduced previously are used in applications of TAM. An object can com-
municate with the outside world by means of:

• a set of programs that can be used by objects from other modules to provide information to, and/or receive in-
formation from the object they are called access-programs;

• a vector of external variables that the object observes they are called input variables;
• a vector of variables whose values are computed by the object and can be observed externally they are

1. The term trace equivalence relation is used in the previous descriptions of TAM. We will elaborate this issue in Section 2.4.
2. Homogenous objects have the same sets of feasible traces.

o o

o
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called output variables.
Thus, the following events can affect an object:

• access-program invocations,
• selected changes of values of the input variables, called input variable events3;

and the following outputs can be produced by an object:
• values returned by access-program invocations,
• values of output variables4. 

In TAM we describe objects from an external observer’s point of view. Therefore, we should specify which trac-
es can be observed, i.e., which are feasible. Usually this is not an easy task  even in simple cases formulae charac-
terizing such traces are complex. The authors of TAM have invented a simpler technique [4, 15] which is based on the
corollary from Section 2.2. In this technique, however, it is not necessary to describe the observational equivalence
completely. We have to present only a small subset of it. The following steps should be accomplished:

• We choose a subset of traces to be called canonical traces. Let us denote this set by C. We assume that the
empty trace is a member of C. We describe the object’s behavior only after traces from C. 

• We define the output relation, out; it is a subset of the product C  E  R. This relation states which outputs
can be produced in response to events after a canonical trace. TC, E, O out iff O can be produced in re-
sponse to E after trace TC. In other words, we define the set of feasible single-event extensions of canonical
traces. The relation out has to satisfy the following property:

T C E E O R [(T, E, O) out]. 

This means that for each canonical trace and each event at least one output should be specified.
• We define a subset of “ ” by means of the extension function, ef, which maps from out into the set of canoni-

cal traces. If efTCEOSC, then we know that TC.E.O is observationally equivalent to SC and thus we
may further assume that the object’s trace is SC. 

The extension function allows us to reduce each feasible trace to an observationally equivalent canonical trace
(this is discussed in the next section). Using the output relation we can predict which outputs the object will produce
in response to events after a canonical trace. Therefore, the technique described above completely specifies the exter-
nally observable behavior of the object.

A trace specification consists of a description of the generic object from the module, and contains:
• a list of input and output variables,
• a definition of input variable events,
• a list of access-programs with a description of arguments and outputs produced by each access-program,
• a definition of the characteristic predicate of the set of canonical traces, “canonical”,
• a definition of the extension function,
• a definition of the output relation.

2.4  The specification equivalence 
The feasibility of traces may be deduced from the definition of the set of canonical traces, the extension function,

ef, and the output relation, out, as follows. 
Let us introduce a reduction function, r, that maps the set of feasible traces onto the set of canonical traces. We

3. It is reasonable to define events as only those changes of the input variables which influence the object’s behavior and to ig-
nore those which are irrelevant.

4. The characteristic of an object presented in Section 2.1 implies that the values of output variables may change only as a result
of an event. Thus, it is sufficient to focus attention solely on the values of output variables just after events.

o
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define it, together with the feasibility of traces (predicate “feasible”), by a parallel induction:
- feasible(_)
- r(_) = _
- feasible(T.E.O)  feasible(T)  (r(T),E,O) out
- r(T.E.O) = ef(r(T),E,O) 
Since a trace specification states which traces are feasible, it also determines the observational equivalence rela-

tion (cf. Section 2.2). The reduction function defines another equivalence relation on feasible traces, “ ”. We call two
feasible traces T1 and T2 specification equivalent, T1  T2, iff r(T1) = r(T2). The predicate canonical should define
unique representatives of equivalence classes of “ ”. Otherwise, there exists a canonical trace U such that r(U) ¼U
and the specification is not correct. 

For each pair of feasible traces, T1 and T2, it is true that T1  T2  T1  T2. Usually this implication holds in both
directions, i.e., the two relations on traces, “ ” and “ ”, are identical; they are called the trace equivalence relation,
and are denoted by “”. Sometimes, however, “ ” may partition the set of feasible traces into smaller equivalence
classes than “ ” does. Thus, there may exist different canonical traces that are observationally equivalent.

Let us illustrate the possible differences between the two relations using a simple, well-known example5. We
have a limited capacity stack of non-negative integers with the following access-programs: 

- PUSH(a) pushes a onto the top of the stack if the stack is not full, or changes nothing otherwise,
- POP removes the top element from the stack if the stack is not empty, or changes nothing otherwise,
- TOP returns the value of the top element of the stack if the stack is not empty, or otherwise.
It seems natural to define canonical traces as all sequences of PUSH(ai) of the length up to the capacity of the

stack. Such a sequence represents the current content of the stack, the only relevant information. Both equivalence re-
lations would be the same in this case.

Let us now slightly modify our example and require that the TOP access-program return the value taken modulo
256 (for non-empty stacks). The new specification may differ only in the description of the output relation where the
value returned by TOP is defined. Although the two traces PUSH(5) and PUSH(261) are canonical, they are observa-
tionally equivalent — the only way to retrieve information from the stack is to call the program TOP which will re-
turn 5 in both cases. In other words, if we do not change the definition of the predicate canonical in the specification
of our modified stack, then the two equivalence relations (“ ” and “ ”) are not identical anymore. 

In this particular case we could easily change the second specification by modifying the canonical traces to be se-
quences of PUSH(ai mod 256), resulting in the two equivalence relations being the same. However, such a modifica-
tion might be not so straightforward and/or reasonable in the case of more complex examples (cf. e.g. [8]).

3  Modeling a trace specification

3.1  Mealy machines
A definition of a Mealy machine, as introduced in [10], can be easily extended to cover a non-deterministic case.

By a Generalized Mealy Machine we understand a tuple M = Q, q0where:
•  is a non-empty finite set, called the input alphabet,
• is a non-empty finite set, called the output alphabet,
• Q is a non-empty finite set, called the set of states,

5. It would not be reasonable to use a complex example in this paper — it would require a detailed explanation of the specifica-
tion syntax. One can find such a more realistic example in [8].

s
s

s

s o
s o

s
o

s o
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• q0 Q and is called the initial state of the machine,
• QQ and is called the transition relation,
•  QQ and is called the output relation

In this paper we will use the shorter term “Mealy machine” to cover the general case.
When machine M is in state q and the input symbol is a, M moves to a state r allowed by  i.e., such that

(q,a,r). During this state transition M produces a symbol o as its output, such that (q,a,r,o). M starts in the state
q0. We assume that at least one transition is allowed for each state and each symbol from the input alphabet, and that
for each transition there exists at least one symbol from the output alphabet that can be produced during this transi-
tion. More formally,

- qQ a rQ [(q,a,r)]
- qQ a rQ o [(q,a,r) (q,a,r,o)].
For a machine M and for a sequence E1,E2,,En of symbols from the input alphabet we can define a set of all se-

quences O1,O2,,On that can be produced by M in response to E1,E2,,En. We denote this set by M(E1,E2,,En).
Two machines M1 and M2 are said to be equivalent iff they have the same input and output alphabets and for each se-
quence E1,E2,,En of symbols from the input alphabet, M1(E1,E2,,En) = M2(E1,E2,,En).

3.2  A trace specification as a Mealy machine
If the set of canonical traces of a certain specification is finite, this specification can be modeled by a Mealy ma-

chine as follows. Let ef  be the extension function and out the output relation. Then:
•  is the set of all events that can affect the object;
• is the product of two sets: the set of all possible outputs of access-programs and the set of all possible tuples

of values of output variables; if there exists an event which produces no output, we add a special symbol nil
to; we assume that this symbol is produced in response to such an event;

• Q is the set of all canonical traces;
• q0 is the empty trace;
•  is the relation such that (T,E,S)iff there exists O such that ef(T,E,O) = S and (T,E,O) out; 
•  is the relation such that (T,E,S,O) iff ef(T,E,O) = S and (T,E,O) out.

The class of all Mealy machines that are models for trace specifications does not contain all Mealy machines.
Each machine which is the model of a specification satisfies the following condition:

(T,E,S)(T,E,R) S=R  O(T,E,S,O)(T,E,R,O)]
i.e., the input and the output of the machine fully determine the state transition. This property of Mealy machines is
called output driven determinism.

The choice of canonical traces is almost arbitrary (cf. Section 2.3). Thus if we select an infinite set we cannot use
Mealy machine as a model. Below we show that it is always possible to choose a finite set of canonical traces; the
only task left to a specifier is then to find the appropriate set.

Claim:
For each object the set of equivalence classes of the observational equivalence relation “ ” is finite.

Proof:
Let us assume that we want to specify an object According to the assumption made in Section 2.1,  can
only be in a finite number of states; let us denote this set of states by Given a feasible trace T of  we can in-
dicate the set of states in which  can be after T. We denote this subset of by States(T)The set States(T)need
not be a singleton because can be non-deterministic. We define a new relation on traces of : 

T1 T2 States(T1) = States(T2). 

o
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Sincethe equality of subsets of  is an equivalence relation, “” is an equivalence relation too. 

Note that if T1 T2 then T1  T2. This is because the future behavior of  depends only on its current state: if,
after T1, object  can be in state q and can produce O1,O2,,Ok in response to the sequence of events
E1,E2,,Ek, then, after T2,  can also be in state q and can produce O1,O2,,Ok in response to E1,E2,,Ek as
well.

In the above paragraph we have shown that T1 T2  T1  T2. Since  has only a finite number of subsets, the
set of equivalence classes of “” is finite. This implies that the number of equivalence classes of “ ” is also fi-
nite and ends the proof.

One should be warned, however, that an object with n states may have (2n1) equivalence classes of “ ”; there-
fore, the number of states of the modeling machine could be also very large. This situation may occur when the spec-
ified object is non-deterministic.

Let us also note that for every specification, S, the number of equivalence classes of “ ” is equal to the number of
states in the Mealy machine, M, modeling S. If the two relations “ ” and “ ” are the same for S, then M is the minimal
machine among all output driven deterministic machines equivalent to M.

4  A rationale for certain decisions

4.1  The form of a trace
Together with the method, the form of a trace has also undergone change. In the report on TAM [15], a trace

starts with the initial values of the output variables and ends with the last event. Subsequently, however, it has become
clear that such a solution has some drawbacks. In recent works on TAM (e.g. in [7, 16]) a trace is already defined in
the same way as in this paper.

Let us compare the two forms and justify our choice. In the approach described in [15], the values of the output
variables are computed after the last event and are used to extend the trace when a new event arrives. Thus, the cur-
rent values of the output variables form a part of the state of an object. We chose to add these values at the end of the
trace in order to describe the record of the observation of an object by the trace alone. This change made it possible,
in particular, to give a precise semantics of output variables in the case of non-deterministic modules (cf. [8]). We
also excluded the initial values of the output variables from the trace, because these values are not computed in re-
sponse to any event (cf. Section 2.2). We assume that the values of the output variables are undefined when we begin
the observation of the object. Note also that if we had not excluded the initial values of output variables from a trace,
the concatenation of two traces could not have been defined naturally. 

In the approach described in this paper, to initialize the output variables one should create an access-program
which must then be invoked to establish their initial values.

4.2  Extension functions vs. extension relations
As was pointed out in Section 3.2, Mealy machines serve as a good model for trace specifications. However,

transitions in Mealy machines are described using relations, while in TAM we use functions to define changes of the
canonical trace of an object. In the case of non-deterministic modules, it might seem natural to use extension relations
instead of extension functions. We have investigated the need to introduce such a change in the method and decided
not to, for the following reasons.

First of all, a trace expresses what an external observer knows of the behavior of the object. This knowledge does
not change non-deterministically; one knows what has just been observed (we assume that one is able to notice every

o

o
o

o

s
o s
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aspect of the externally visible behavior of the object). Hence, the use of a function to describe extensions seems to be
the proper choice. 

Secondly, the extension function is a sufficient tool for describing every externally observable aspect of an ob-
ject’s behavior, also non-deterministic; there is no need then to introduce a relation instead (we have shown in Section
2.2 how to derive a trace specification of an object from its observable features).

Thirdly, extension functions facilitate automatic verification of implementations in a simpler way than extension
relations would do. It is very important in various software tools supporting TAM that are under development (cf. e.g.
[5, 16]).

5  Conclusions
Trace specifications of module interfaces have a relatively long history but in the last few years we categorize

them within the so called “functional approach” to computer system documentation6 [13, 14]. This approach is based
on the premise that professional documentation of complex computer systems can be expressed in mathematical
terms (functions, relations, sets, etc.). Such documentation methods have already been used in a number of applica-
tions (e.g. [12]). Lessons learned are that the approach needs to be further elaborated and that supporting software
tools are indispensable. In particular, we need to improve the mathematical soundness of the methods. We hope that
the present paper is a step in this direction.

We have tried to give a precise and clear characterization of the basic concepts in TAM and to provide an appro-
priate mathematical model for trace specifications. In particular, the distinction between the two equivalence relations
in TAM (“ ” versus “ ”) has never been made explicit in the publications on the method known to us. The usage of
the single notation (“”) was a source of misunderstanding. We hope that we have at last sufficiently clarified these
issues. 

In this paper we have discussed a restricted version of TAM. Reference [6] is a continuation of the present work
and fundamentals of TAM for multi-object modules are discussed there. In both papers, however, only software mod-
ules are dealt with (since this is the most common and natural case). Yet TAM can also be used for hardware modules,
as investigated for example in [3] — we can easily extend our treatment to cover both types of modules. There are
also other aspects of the method which require further research, like the role of input/output variables. Some initial
proposals of more precise definitions of these notions, as we understand them, can be found in [2, 8]. We hope that we
are approaching the final phase of a complete description of the syntax and semantics of TAM together with useful
tools supporting its practical applications.
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